Targeting Uplift

Targeting Uplift
Author: René Michel
Publisher: Springer Nature
Total Pages: 373
Release: 2019-09-09
Genre: Business & Economics
ISBN: 3030226255

This book explores all relevant aspects of net scoring, also known as uplift modeling: a data mining approach used to analyze and predict the effects of a given treatment on a desired target variable for an individual observation. After discussing modern net score modeling methods, data preparation, and the assessment of uplift models, the book investigates software implementations and real-world scenarios. Focusing on the application of theoretical results and on practical issues of uplift modeling, it also includes a dedicated chapter on software solutions in SAS, R, Spectrum Miner, and KNIME, which compares the respective tools. This book also presents the applications of net scoring in various contexts, e.g. medical treatment, with a special emphasis on direct marketing and corresponding business cases. The target audience primarily includes data scientists, especially researchers and practitioners in predictive modeling and scoring, mainly, but not exclusively, in the marketing context.

Predictive Analytics

Predictive Analytics
Author: Eric Siegel
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2016-01-12
Genre: Business & Economics
ISBN: 1119153654

"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a

Predictive Analytics

Predictive Analytics
Author: Eric Siegel
Publisher: John Wiley & Sons
Total Pages: 338
Release: 2013-02-07
Genre: Business & Economics
ISBN: 1118416856

“Mesmerizing & fascinating...” —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 183 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.

Advances in Data Mining. Applications and Theoretical Aspects

Advances in Data Mining. Applications and Theoretical Aspects
Author: Petra Perner
Publisher: Springer
Total Pages: 456
Release: 2016-06-27
Genre: Computers
ISBN: 3319415611

This book constitutes the refereed proceedings of the 16th Industrial Conference on Advances in Data Mining, ICDM 2016, held in New York, NY, USA, in July 2016. The 33 revised full papers presented were carefully reviewed and selected from 100 submissions. The topics range from theoretical aspects of data mining to applications of data mining, such as in multimedia data, in marketing, in medicine, and in process control, industry, and society.

Tectonic Uplift and Climate Change

Tectonic Uplift and Climate Change
Author: William F. Ruddiman
Publisher: Springer Science & Business Media
Total Pages: 537
Release: 2013-11-11
Genre: Science
ISBN: 1461559359

A significant advance in climatological scholarship, Tectonic Uplift and Climate Change is a multidisciplinary effort to summarize the current status of a new theory steadily gaining acceptance in geoscience circles: that long-term cooling and glaciation are controlled by plateau and mountain uplift. Researchers in many diverse fields, from geology to paleobotany, present data that substantiate this hypothesis. The volume covers most of the key, dramatic transformations of the Earth's surface.

Topics in Applied Statistics

Topics in Applied Statistics
Author: Mingxiu Hu
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 2013-09-14
Genre: Medical
ISBN: 1461478464

This volume presents 27 selected papers in topics that range from statistical applications in business and finance to applications in clinical trials and biomarker analysis. All papers feature original, peer-reviewed content. The editors intentionally selected papers that cover many topics so that the volume will serve the whole statistical community and a variety of research interests. The papers represent select contributions to the 21st ICSA Applied Statistics Symposium. The International Chinese Statistical Association (ICSA) Symposium took place between the 23rd and 26th of June, 2012 in Boston, Massachusetts. It was co-sponsored by the International Society for Biopharmaceutical Statistics (ISBS) and American Statistical Association (ASA). This is the inaugural proceedings volume to share research from the ICSA Applied Statistics Symposium.

Enterprise Artificial Intelligence Transformation

Enterprise Artificial Intelligence Transformation
Author: Rashed Haq
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2020-06-10
Genre: Business & Economics
ISBN: 1119665973

Enterprise Artificial Intelligence Transformation AI is everywhere. From doctor's offices to cars and even refrigerators, AI technology is quickly infiltrating our daily lives. AI has the ability to transform simple tasks into technological feats at a human level. This will change the world, plain and simple. That's why AI mastery is such a sought-after skill for tech professionals. Author Rashed Haq is a subject matter expert on AI, having developed AI and data science strategies, platforms, and applications for Publicis Sapient's clients for over 10 years. He shares that expertise in the new book, Enterprise Artificial Intelligence Transformation. The first of its kind, this book grants technology leaders the insight to create and scale their AI capabilities and bring their companies into the new generation of technology. As AI continues to grow into a necessary feature for many businesses, more and more leaders are interested in harnessing the technology within their own organizations. In this new book, leaders will learn to master AI fundamentals, grow their career opportunities, and gain confidence in machine learning. Enterprise Artificial Intelligence Transformation covers a wide range of topics, including: Real-world AI use cases and examples Machine learning, deep learning, and slimantic modeling Risk management of AI models AI strategies for development and expansion AI Center of Excellence creating and management If you're an industry, business, or technology professional that wants to attain the skills needed to grow your machine learning capabilities and effectively scale the work you're already doing, you'll find what you need in Enterprise Artificial Intelligence Transformation.

Targeting Using Augmented Data in Database Marketing

Targeting Using Augmented Data in Database Marketing
Author: Bettina Hüttenrauch
Publisher: Springer
Total Pages: 361
Release: 2016-06-10
Genre: Business & Economics
ISBN: 3658145773

This study delivers insights on which external sources – e.g. website click behavior, surveys, or social media data – can and cannot be used for data augmentation. A case study is performed to test the suitability of different sources in order to create a generalized practical guide for data augmentation in marketing. Data augmentation is a beneficial tool for companies to use external data, if the internal data basis for targeting is not sufficient to reach the customers with the highest propensity. This study shows that augmenting data from feasible sources leads to significant conversion lifts.

Every Move You Make

Every Move You Make
Author: Deborah Bee
Publisher: Bonnier Zaffre Ltd.
Total Pages: 393
Release: 2020-03-05
Genre: Fiction
ISBN: 1785760777

A dark psychological thriller, perfect for fans of Clare Mackintosh and Lisa Jewell There are two sides to every story. But only one is the truth. A young woman turns up at a police station. She has been kept prisoner in her own home. Abused and tortured, her every move watched, her every thought controlled. Now she's finally escaped. That's what she says. But when the police arrive at the address she's given them, her story doesn't seem to add up. Her husband is missing, but his phone and wallet are still in the house. She says she's the victim, but what if she's not? What if the stories she's telling aren't her stories at all . . .

Machine Learning for Business Analytics

Machine Learning for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
Total Pages: 740
Release: 2023-03-08
Genre: Computers
ISBN: 1119828791

Machine Learning for Business Analytics Machine learning—also known as data mining or data analytics—is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information. Machine Learning for Business Analytics: Concepts, Techniques and Applications in RapidMiner provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques. This is the seventh edition of Machine Learning for Business Analytics, and the first using RapidMiner software. This edition also includes: A new co-author, Amit Deokar, who brings experience teaching business analytics courses using RapidMiner Integrated use of RapidMiner, an open-source machine learning platform that has become commercially popular in recent years An expanded chapter focused on discussion of deep learning techniques A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning A new chapter on responsible data science Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.