Graphs and Tables of the Mathieu Functions and Their First Derivatives

Graphs and Tables of the Mathieu Functions and Their First Derivatives
Author: James C. Wiltse
Publisher: Author House
Total Pages: 172
Release: 2012-01-26
Genre: Science
ISBN: 1468544616

Mathieu functions are employed in solving a variety of problems in mathematic (al?) physics. In many cases the configuration involves elliptical coordinates. Of course, the circular geometry is the degenerate case of the elliptical cross section. This volume contains values for, and curves of the angular and radial Mathieu functions and their first derivatives. The latter are often needed in the solution of problems, in particular in solving electromagnetic wave propagation problems. Also included are data on zero crossings of the radial Mathieu functions. These are often needed for determining the cut-off frequencies for propagating modes. Other tables are available for the Mathieu functions, but there is very little data available for derivatives or zero crossings. It is felt that the principal value of this volume is in the multitude of curves included. The analyst dealing with elliptical cases can, by inspection of the curves, find values of the functions and derivatives at the origin, maxima and minima, zero crossings, and qualitative behavior of the plots as a function of several parameters. To the authors knowledge, this is the most extensive presentation of plotted information. It is hoped that the information will be helpful in the solution of practical problems. This book is divided into two sections. Section I deals only with the functions themselves, defining the equations and terminology used and presenting the tabular data and curves. Section II treats the derivatives and the zeros. Again the terminology and equations for the first derivatives are given. The Mathieu functions are named after Emile L. Mathieu (1835-1890), a French mathematician, who in 1868 published an article dealing with vibratory movement of the elliptic membrane. The asteroid 27947 Emilemathieu is named in his honor.

Field Theory Handbook

Field Theory Handbook
Author: P. Moon
Publisher: Springer Science & Business Media
Total Pages: 244
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642832431

Let us first state exactly what this book is and what it is not. It is a compendium of equations for the physicist and the engineer working with electrostatics, magne tostatics, electric currents, electromagnetic fields, heat flow, gravitation, diffusion, optics, or acoustics. It tabulates the properties of 40 coordinate systems, states the Laplace and Helmholtz equations in each coordinate system, and gives the separation equations and their solutions. But it is not a textbook and it does not cover relativistic and quantum phenomena. The history of classical physics may be regarded as an interplay between two ideas, the concept of action-at-a-distance and the concept of a field. Newton's equation of universal gravitation, for instance, implies action-at-a-distance. The same form of equation was employed by COULOMB to express the force between charged particles. AMPERE and GAUSS extended this idea to the phenomenological action between currents. In 1867, LUDVIG LORENZ formulated electrodynamics as retarded action-at-a-distance. At almost the same time, MAXWELL presented the alternative formulation in terms of fields. In most cases, the field approach has shown itself to be the more powerful.