Symmetries Of Nonlinear Pdes On Metric Graphs And Branched Networks
Download Symmetries Of Nonlinear Pdes On Metric Graphs And Branched Networks full books in PDF, epub, and Kindle. Read online free Symmetries Of Nonlinear Pdes On Metric Graphs And Branched Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dmitry Pelinovsky |
Publisher | : MDPI |
Total Pages | : 144 |
Release | : 2019-10-30 |
Genre | : Mathematics |
ISBN | : 3039217208 |
This Special Issue focuses on recent progress in a new area of mathematical physics and applied analysis, namely, on nonlinear partial differential equations on metric graphs and branched networks. Graphs represent a system of edges connected at one or more branching points (vertices). The connection rule determines the graph topology. When the edges can be assigned a length and the wave functions on the edges are defined in metric spaces, the graph is called a metric graph. Evolution equations on metric graphs have attracted much attention as effective tools for the modeling of particle and wave dynamics in branched structures and networks. Since branched structures and networks appear in different areas of contemporary physics with many applications in electronics, biology, material science, and nanotechnology, the development of effective modeling tools is important for the many practical problems arising in these areas. The list of important problems includes searches for standing waves, exploring of their properties (e.g., stability and asymptotic behavior), and scattering dynamics. This Special Issue is a representative sample of the works devoted to the solutions of these and other problems.
Author | : Pavel Kurasov |
Publisher | : Springer Nature |
Total Pages | : 644 |
Release | : 2023-12-09 |
Genre | : Science |
ISBN | : 3662678721 |
This open access book gives a systematic introduction into the spectral theory of differential operators on metric graphs. Main focus is on the fundamental relations between the spectrum and the geometry of the underlying graph. The book has two central themes: the trace formula and inverse problems. The trace formula is relating the spectrum to the set of periodic orbits and is comparable to the celebrated Selberg and Chazarain-Duistermaat-Guillemin-Melrose trace formulas. Unexpectedly this formula allows one to construct non-trivial crystalline measures and Fourier quasicrystals solving one of the long-standing problems in Fourier analysis. The remarkable story of this mathematical odyssey is presented in the first part of the book. To solve the inverse problem for Schrödinger operators on metric graphs the magnetic boundary control method is introduced. Spectral data depending on the magnetic flux allow one to solve the inverse problem in full generality, this means to reconstruct not only the potential on a given graph, but also the underlying graph itself and the vertex conditions. The book provides an excellent example of recent studies where the interplay between different fields like operator theory, algebraic geometry and number theory, leads to unexpected and sound mathematical results. The book is thought as a graduate course book where every chapter is suitable for a separate lecture and includes problems for home studies. Numerous illuminating examples make it easier to understand new concepts and develop the necessary intuition for further studies.
Author | : |
Publisher | : |
Total Pages | : 704 |
Release | : 1995 |
Genre | : Aeronautics |
ISBN | : |
Author | : Delio Mugnolo |
Publisher | : Springer |
Total Pages | : 294 |
Release | : 2014-05-21 |
Genre | : Science |
ISBN | : 3319046217 |
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations. This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks. With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research.
Author | : Alexandre Girouard |
Publisher | : American Mathematical Soc. |
Total Pages | : 298 |
Release | : 2017-10-30 |
Genre | : Mathematics |
ISBN | : 147042665X |
A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.
Author | : BÖHMER |
Publisher | : Birkhäuser |
Total Pages | : 323 |
Release | : 2013-03-08 |
Genre | : Science |
ISBN | : 3034875363 |
Symmetry is a property which occurs throughout nature and it is therefore natural that symmetry should be considered when attempting to model nature. In many cases, these models are also nonlinear and it is the study of nonlinear symmetric models that has been the basis of much recent work. Although systematic studies of nonlinear problems may be traced back at least to the pioneering contributions of Poincare, this remains an area with challenging problems for mathematicians and scientists. Phenomena whose models exhibit both symmetry and nonlinearity lead to problems which are challenging and rich in complexity, beauty and utility. In recent years, the tools provided by group theory and representation theory have proven to be highly effective in treating nonlinear problems involving symmetry. By these means, highly complex situations may be decomposed into a number of simpler ones which are already understood or are at least easier to handle. In the realm of numerical approximations, the systematic exploitation of symmetry via group repre sentation theory is even more recent. In the hope of stimulating interaction and acquaintance with results and problems in the various fields of applications, bifurcation theory and numerical analysis, we organized the conference and workshop Bifurcation and Symmetry: Cross Influences between Mathematics and Applications during June 2-7,8-14, 1991 at the Philipps University of Marburg, Germany.
Author | : Avi Wigderson |
Publisher | : Princeton University Press |
Total Pages | : 434 |
Release | : 2019-10-29 |
Genre | : Computers |
ISBN | : 0691189137 |
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author | : Gisele Ruiz Goldstein |
Publisher | : CRC Press |
Total Pages | : 442 |
Release | : 2003-06-24 |
Genre | : Mathematics |
ISBN | : 9780824709754 |
Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.
Author | : John P. Boyd |
Publisher | : Courier Corporation |
Total Pages | : 690 |
Release | : 2001-12-03 |
Genre | : Mathematics |
ISBN | : 0486411834 |
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Author | : Tyn Myint-U |
Publisher | : Springer Science & Business Media |
Total Pages | : 790 |
Release | : 2007-04-05 |
Genre | : Mathematics |
ISBN | : 0817645608 |
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.