Symmetries of Nature
Author | : Klaus Mainzer |
Publisher | : Walter de Gruyter |
Total Pages | : 696 |
Release | : 2013-12-02 |
Genre | : Philosophy |
ISBN | : 3110886936 |
Download Symmetries Of Nature full books in PDF, epub, and Kindle. Read online free Symmetries Of Nature ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Klaus Mainzer |
Publisher | : Walter de Gruyter |
Total Pages | : 696 |
Release | : 2013-12-02 |
Genre | : Philosophy |
ISBN | : 3110886936 |
Author | : Ian Stewart |
Publisher | : |
Total Pages | : 306 |
Release | : 2008-04-29 |
Genre | : Mathematics |
ISBN | : 0465082378 |
Physics.
Author | : Marcus Du Sautoy |
Publisher | : Harper Collins |
Total Pages | : 2 |
Release | : 2009-10-13 |
Genre | : Mathematics |
ISBN | : 0061863351 |
A mathematician takes us on “a pilgrimage through the uncanny world of symmetry [in] a dramatically presented and polished treasure of theories” (Kirkus Reviews). Symmetry is all around us. Of fundamental significance to the way we interpret the world, this unique, pervasive phenomenon indicates a dynamic relationship between objects. Combining a rich historical narrative with his own personal journey as a mathematician, Marcus du Sautoy—a writer “able to engage general readers in the cerebral dramas of pure mathematics” (Booklist)—takes a unique look into the mathematical mind as he explores deep conjectures about symmetry and brings us face-to-face with the oddball mathematicians, both past and present, who have battled to understand symmetry’s elusive qualities. “The author takes readers gently by the hand and leads them elegantly through some steep and rocky terrain as he explains the various kinds of symmetry and the objects they swirl around. Du Sautoy explains how this twirling world of geometric figures has strange but marvelous connections to number theory, and how the ultimate symmetrical object, nicknamed the Monster, is related to string theory. This book is also a memoir in which du Sautoy describes a mathematician’s life and how one makes a discovery in these strange lands. He also blends in minibiographies of famous figures like Galois, who played significant roles in this field.” —Publishers Weekly “Fascinating and absorbing.” —The Economist “Impressively, he conveys the thrill of grasping the mathematics that lurk in the tile work of the Alhambra, or in palindromes, or in French mathematician Évariste Galois’s discovery of the interactions between the symmetries in a group.” —Kirkus Reviews
Author | : C. D. Froggatt |
Publisher | : World Scientific |
Total Pages | : 600 |
Release | : 1991 |
Genre | : Science |
ISBN | : 9789971966300 |
The development in our understanding of symmetry principles is reviewed. Many symmetries, such as charge conjugation, parity and strangeness, are no longer considered as fundamental but as natural consequences of a gauge field theory of strong and electromagnetic interactions. Other symmetries arise naturally from physical models in some limiting situation, such as for low energy or low mass. Random dynamics and attempts to explain all symmetries ? even Lorentz invariance and gauge invariance ? without appealing to any fundamental invariance of the laws of nature are discussed. A selection of original papers is reprinted.
Author | : Bourama Toni |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2023-02-25 |
Genre | : Science |
ISBN | : 9783030922948 |
This unique book gathers various scientific and mathematical approaches to and descriptions of the natural and physical world stemming from a broad range of mathematical areas – from model systems, differential equations, statistics, and probability – all of which scientifically and mathematically reveal the inherent beauty of natural and physical phenomena. Topics include Archimedean and Non-Archimedean approaches to mathematical modeling; thermography model with application to tungiasis inflammation of the skin; modeling of a tick-Killing Robot; various aspects of the mathematics for Covid-19, from simulation of social distancing scenarios to the evolution dynamics of the coronavirus in some given tropical country to the spatiotemporal modeling of the progression of the pandemic. Given its scope and approach, the book will benefit researchers and students of mathematics, the sciences and engineering, and everyone else with an appreciation for the beauty of nature. The outcome is a mathematical enrichment of nature’s beauty in its various manifestations. This volume honors Dr. John Adam, a Professor at Old Dominion University, USA, for his lifetime achievements in the fields of mathematical modeling and applied mathematics. Dr. Adam has published over 110 papers and authored several books.
Author | : Jakob Schwichtenberg |
Publisher | : Springer |
Total Pages | : 294 |
Release | : 2017-12-01 |
Genre | : Science |
ISBN | : 3319666312 |
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
Author | : Kurt Sundermeyer |
Publisher | : Springer |
Total Pages | : 806 |
Release | : 2014-07-23 |
Genre | : Science |
ISBN | : 3319065815 |
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.
Author | : Ian Stewart |
Publisher | : OUP Oxford |
Total Pages | : 161 |
Release | : 2013-05-30 |
Genre | : Mathematics |
ISBN | : 0191652741 |
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author | : Mario Livio |
Publisher | : Simon and Schuster |
Total Pages | : 367 |
Release | : 2005-09-19 |
Genre | : Mathematics |
ISBN | : 0743274628 |
What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
Author | : Leon M. Lederman |
Publisher | : Prometheus Books |
Total Pages | : 363 |
Release | : 2011-11-29 |
Genre | : Science |
ISBN | : 1615920412 |
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.