Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering

Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering
Author: Edward L. Green
Publisher: American Mathematical Soc.
Total Pages: 250
Release: 2001
Genre: Mathematics
ISBN: 0821826794

This volume presents the proceedings from the research conference, Symbolic Computation: Solving Equations in Algebra, Analysis, and Engineering, held at Mount Holyoke College, USA. It provides an overview of contemporary research in symbolic computation as it applies to the solution of polynomial systems. The conference brought together pure and applied mathematicians, computer scientists, and engineers, who use symbolic computation to solve systems of equations or who develop the theoretical background and tools needed for this purpose. Within this general framework, the conference focused on several themes: systems of polynomials, systems of differential equations, noncommutative systems, and applications.

Artificial Intelligence and Symbolic Computation

Artificial Intelligence and Symbolic Computation
Author: Jaques Calmet
Publisher: Springer Science & Business Media
Total Pages: 280
Release: 2006-09-13
Genre: Computers
ISBN: 3540397280

This book constitutes the refereed proceedings of the 8th International Conference on Artificial Intelligence and Symbolic Computation, AISC 2006, held in Beijing, China in September 2006. The 18 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 39 submissions. Based on heuristics and mathematical algorithmics, artificial intelligence and symbolic computation are two views and approaches for automating (mathematical) problem solving. The papers address all current aspects in the area of symbolic computing and AI: mathematical foundations, implementations, and applications in industry and academia. The papers are organized in topical sections on artificial intelligence and theorem proving, symbolic computation, constraint satisfaction/solving, and mathematical knowledge management.

Solving Polynomial Equations

Solving Polynomial Equations
Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2005-04-27
Genre: Computers
ISBN: 3540243267

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.

Algebraic Geometry and Geometric Modeling

Algebraic Geometry and Geometric Modeling
Author: Mohamed Elkadi
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2006-11-02
Genre: Mathematics
ISBN: 3540332758

This book spans the distance between algebraic descriptions of geometric objects and the rendering of digital geometric shapes based on algebraic models. These contrasting points of view inspire a thorough analysis of the key challenges and how they are met. The articles focus on important classes of problems: implicitization, classification, and intersection. Combining illustrative graphics, computations and review articles this book helps the reader gain a firm practical grasp of these subjects.

Algebra, Geometry and Software Systems

Algebra, Geometry and Software Systems
Author: Michael Joswig
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2013-03-14
Genre: Mathematics
ISBN: 3662051486

A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.

Topics in Algebraic Geometry and Geometric Modeling

Topics in Algebraic Geometry and Geometric Modeling
Author: Ron Goldman
Publisher: American Mathematical Soc.
Total Pages: 378
Release: 2003
Genre: Mathematics
ISBN: 0821834207

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ''Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ''On the determination of the degree of an equations obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.

Using Algebraic Geometry

Using Algebraic Geometry
Author: David A Cox
Publisher: Springer Science & Business Media
Total Pages: 596
Release: 2005-03-17
Genre: Mathematics
ISBN: 9780387207339

The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.

Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing

Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing
Author: Ravi Janardan
Publisher: American Mathematical Soc.
Total Pages: 360
Release: 2005
Genre: Computers
ISBN: 0821836285

Computer-Aided Design and Manufacturing (CAD/CAM) is concerned with all aspects of the process of designing, prototyping, manufacturing, inspecting, and maintaining complex geometric objects under computer control. As such, there is a natural synergy between this field and Computational Geometry (CG), which involves the design, analysis, implementation, and testing of efficient algorithms and data representation techniques for geometric entities such as points, polygons, polyhedra, curves, and surfaces. The DIMACS Center (Piscataway, NJ) sponsored a workshop to further promote the interaction between these two fields. Attendees from academia, research laboratories, and industry took part in the invited talks, contributed presentations, and informal discussions. This volume is an outgrowth of that meeting.

Approximate Commutative Algebra

Approximate Commutative Algebra
Author: Lorenzo Robbiano
Publisher: Springer Science & Business Media
Total Pages: 237
Release: 2009-09-18
Genre: Mathematics
ISBN: 3211993142

Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.