Survival Analysis with Correlated Endpoints

Survival Analysis with Correlated Endpoints
Author: Takeshi Emura
Publisher: Springer
Total Pages: 126
Release: 2019-03-25
Genre: Medical
ISBN: 9811335168

This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.

The Evaluation of Surrogate Endpoints

The Evaluation of Surrogate Endpoints
Author: Geert Molenberghs
Publisher: Springer Science & Business Media
Total Pages: 440
Release: 2005-02-28
Genre: Mathematics
ISBN: 9780387202778

Covers the latest research on a sensitive and controversial topic in a professional and well researched manner. Provides practical outlook as well as model guidelines and software tools that should be of interest to people who use the software tools described and those who do not. Related title by Co-author Geert Molenbergh has sold more than 3500 copies world wide. Provides dual viewpoints: from scientists in the industry as well as regulatory authorities.

Survival Analysis with Correlated Endpoints

Survival Analysis with Correlated Endpoints
Author: Takeshi Emura
Publisher:
Total Pages: 118
Release: 2019
Genre: Electronic books
ISBN: 9789811335174

This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors' original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.

An Introduction to Survival Analysis Using Stata, Second Edition

An Introduction to Survival Analysis Using Stata, Second Edition
Author: Mario Cleves
Publisher: Stata Press
Total Pages: 398
Release: 2008-05-15
Genre: Computers
ISBN: 1597180416

"[This book] provides new researchers with the foundation for understanding the various approaches for analyzing time-to-event data. This book serves not only as a tutorial for those wishing to learn survival analysis but as a ... reference for experienced researchers ..."--Book jacket.

Modeling Survival Data: Extending the Cox Model

Modeling Survival Data: Extending the Cox Model
Author: Terry M. Therneau
Publisher: Springer Science & Business Media
Total Pages: 356
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475732945

This book is for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyze multiple/correlated event data using marginal and random effects. The focus is on actual data examples, the analysis and interpretation of results, and computation. The book shows how these new methods can be implemented in SAS and S-Plus, including computer code, worked examples, and data sets.

The Frailty Model

The Frailty Model
Author: Luc Duchateau
Publisher: Springer Science & Business Media
Total Pages: 329
Release: 2007-10-23
Genre: Mathematics
ISBN: 038772835X

Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.

Survival Analysis

Survival Analysis
Author: John P. Klein
Publisher: Springer Science & Business Media
Total Pages: 508
Release: 2013-06-29
Genre: Medical
ISBN: 1475727283

Making complex methods more accessible to applied researchers without an advanced mathematical background, the authors present the essence of new techniques available, as well as classical techniques, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of practical notes at the end of each section, while technical details of the derivation of the techniques are sketched in the technical notes. This book will thus be useful for investigators who need to analyse censored or truncated life time data, and as a textbook for a graduate course in survival analysis, the only prerequisite being a standard course in statistical methodology.

Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease

Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 335
Release: 2010-06-25
Genre: Medical
ISBN: 0309157277

Many people naturally assume that the claims made for foods and nutritional supplements have the same degree of scientific grounding as those for medication, but that is not always the case. The IOM recommends that the FDA adopt a consistent scientific framework for biomarker evaluation in order to achieve a rigorous and transparent process.

Survival Analysis

Survival Analysis
Author: David Machin
Publisher: John Wiley & Sons
Total Pages: 278
Release: 2006-03-30
Genre: Medical
ISBN: 0470870419

Well received in its first edition, Survival Analysis: A Practical Approach is completely revised to provide an accessible and practical guide to survival analysis techniques in diverse environments. Illustrated with many authentic examples, the book introduces basic statistical concepts and methods to construct survival curves, later developing them to encompass more specialised and complex models. During the years since the first edition there have been several new topics that have come to the fore and many new applications. Parallel developments in computer software programmes, used to implement these methodologies, are relied upon throughout the text to bring it up to date.

Applied Survival Analysis Using R

Applied Survival Analysis Using R
Author: Dirk F. Moore
Publisher: Springer
Total Pages: 245
Release: 2016-05-11
Genre: Medical
ISBN: 3319312456

Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics near the end and in the appendices. A background in basic linear regression and categorical data analysis, as well as a basic knowledge of calculus and the R system, will help the reader to fully appreciate the information presented. Examples are simple and straightforward while still illustrating key points, shedding light on the application of survival analysis in a way that is useful for graduate students, researchers, and practitioners in biostatistics.