Survey on Classical Inequalities

Survey on Classical Inequalities
Author: Themistocles RASSIAS
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401143390

Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address:[email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.

A Survey of Matrix Theory and Matrix Inequalities

A Survey of Matrix Theory and Matrix Inequalities
Author: Marvin Marcus
Publisher: Courier Corporation
Total Pages: 212
Release: 1992-01-01
Genre: Mathematics
ISBN: 9780486671024

Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.

Survey on Classical Inequalities

Survey on Classical Inequalities
Author: Themistocles M. Rassias
Publisher: Springer
Total Pages: 237
Release: 2011-10-22
Genre: Mathematics
ISBN: 9789401143400

Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address:[email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.

Classical and New Inequalities in Analysis

Classical and New Inequalities in Analysis
Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
Total Pages: 739
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401710430

This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.

Problems in Real Analysis

Problems in Real Analysis
Author: Teodora-Liliana Radulescu
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2009-05-29
Genre: Mathematics
ISBN: 0387773789

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.

Issues in General and Specialized Mathematics Research: 2013 Edition

Issues in General and Specialized Mathematics Research: 2013 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 1919
Release: 2013-05-01
Genre: Mathematics
ISBN: 1490112162

Issues in General and Specialized Mathematics Research: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Advances in Inequalities from Probability Theory and Statistics

Advances in Inequalities from Probability Theory and Statistics
Author: Neil S. Barnett
Publisher: Nova Publishers
Total Pages: 244
Release: 2008
Genre: Mathematics
ISBN: 9781600219436

This is the first in a series of research monographs that focus on the research, development and use of inequalities in probability and statistics. All of the papers have been peer refereed and this first edition covers a range of topics that include both survey material of published work as well as new results appearing in print for the first time.

Hardy Inequalities on Homogeneous Groups

Hardy Inequalities on Homogeneous Groups
Author: Michael Ruzhansky
Publisher: Springer
Total Pages: 579
Release: 2019-07-02
Genre: Mathematics
ISBN: 303002895X

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.

Gender, Subjectivity, and Cultural Work

Gender, Subjectivity, and Cultural Work
Author: Christina Scharff
Publisher: Routledge
Total Pages: 185
Release: 2017-09-27
Genre: Social Science
ISBN: 1317375092

What is it like to work as a classical musician today? How can we explain ongoing gender, racial, and class inequalities in the classical music profession? What happens when musicians become entrepreneurial and think of themselves as a product that needs to be sold and marketed? Gender, Subjectivity, and Cultural Work explores these and other questions by drawing on innovative, empirical research on the working lives of classical musicians in Germany and the UK. Indeed, Scharff examines a range of timely issues such as the gender, racial, and class inequalities that characterise the cultural and creative industries; the ways in which entrepreneurialism – as an ethos to work on and improve the self – is lived out; and the subjective experiences of precarious work in so-called ‘creative cities’. Thus, this book not only adds to our understanding of the working lives of artists and creatives, but also makes broader contributions by exploring how precarity, neoliberalism, and inequalities shape subjective experiences. Contributing to a range of contemporary debates around cultural work, Gender, Subjectivity, and Cultural Work will be of interest to scholars and students in the fields of Sociology, Gender and Cultural Studies.

Advances in Quantum Mechanics

Advances in Quantum Mechanics
Author: Alessandro Michelangeli
Publisher: Springer
Total Pages: 292
Release: 2017-08-01
Genre: Mathematics
ISBN: 3319589040

This volume collects recent contributions on the contemporary trends in the mathematics of quantum mechanics, and more specifically in mathematical problems arising in quantum many-body dynamics, quantum graph theory, cold atoms, unitary gases, with particular emphasis on the developments of the specific mathematical tools needed, including: linear and non-linear Schrödinger equations, topological invariants, non-commutative geometry, resonances and operator extension theory, among others. Most of contributors are international leading experts or respected young researchers in mathematical physics, PDE, and operator theory. All their material is the fruit of recent studies that have already become a reference in the community. Offering a unified perspective of the mathematics of quantum mechanics, it is a valuable resource for researchers in the field.