Surgery on Simply-Connected Manifolds

Surgery on Simply-Connected Manifolds
Author: William Browder
Publisher: Springer Science & Business Media
Total Pages: 141
Release: 2012-12-06
Genre: Mathematics
ISBN: 364250020X

This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.

Surgery on Compact Manifolds

Surgery on Compact Manifolds
Author: Charles Terence Clegg Wall
Publisher: American Mathematical Soc.
Total Pages: 321
Release: 1999
Genre: Mathematics
ISBN: 0821809423

The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.

Algebraic and Geometric Surgery

Algebraic and Geometric Surgery
Author: Andrew Ranicki
Publisher: Oxford University Press
Total Pages: 396
Release: 2002
Genre: Mathematics
ISBN: 9780198509240

This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.

Algebraic L-theory and Topological Manifolds

Algebraic L-theory and Topological Manifolds
Author: Andrew Ranicki
Publisher: Cambridge University Press
Total Pages: 372
Release: 1992-12-10
Genre: Mathematics
ISBN: 9780521420242

Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.

The Classifying Spaces for Surgery and Cobordism of Manifolds

The Classifying Spaces for Surgery and Cobordism of Manifolds
Author: Ib Madsen
Publisher: Princeton University Press
Total Pages: 300
Release: 1979-11-21
Genre: Mathematics
ISBN: 9780691082264

Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.

Lectures on the h-Cobordism Theorem

Lectures on the h-Cobordism Theorem
Author: John Milnor
Publisher: Princeton University Press
Total Pages: 123
Release: 2015-12-08
Genre: Mathematics
ISBN: 1400878055

These lectures provide students and specialists with preliminary and valuable information from university courses and seminars in mathematics. This set gives new proof of the h-cobordism theorem that is different from the original proof presented by S. Smale. Originally published in 1965. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Finite Group Actions on Simply-Connected Manifolds and CW Complexes

Finite Group Actions on Simply-Connected Manifolds and CW Complexes
Author: Amir H. Assadi
Publisher: American Mathematical Soc.
Total Pages: 129
Release: 1982
Genre: CW complexes
ISBN: 0821822578

The problem that we are concerned with is the existence and construction of embeddings of a given G-CW complex (G-manifold) in another G-CW complex (G-manifold) having a prescribed homotopy type and a prescribed family of isotropy subgroups.

The Disc Embedding Theorem

The Disc Embedding Theorem
Author: Stefan Behrens
Publisher: Oxford University Press
Total Pages: 300
Release: 2021-07-15
Genre: Mathematics
ISBN: 0192578383

Based on Fields medal winning work of Michael Freedman, this book explores the disc embedding theorem for 4-dimensional manifolds. This theorem underpins virtually all our understanding of topological 4-manifolds. Most famously, this includes the 4-dimensional Poincaré conjecture in the topological category. The Disc Embedding Theorem contains the first thorough and approachable exposition of Freedman's proof of the disc embedding theorem, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided, as well as a stand-alone interlude that explains the disc embedding theorem's key role in all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. Additionally, the ramifications of the disc embedding theorem within the study of topological 4-manifolds, for example Frank Quinn's development of fundamental tools like transversality are broadly described. The book is written for mathematicians, within the subfield of topology, specifically interested in the study of 4-dimensional spaces, and includes numerous professionally rendered figures.

Symplectic Manifolds with no Kaehler structure

Symplectic Manifolds with no Kaehler structure
Author: Alesky Tralle
Publisher: Springer
Total Pages: 216
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540691456

This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.

Involutions on Manifolds

Involutions on Manifolds
Author: Santiago Lopez de Medrano
Publisher: Springer Science & Business Media
Total Pages: 114
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642650120

This book contains the results of work done during the years 1967-1970 on fixed-point-free involutions on manifolds, and is an enlarged version of the author's doctoral dissertation [54J written under the direction of Professor William Browder. The subject of fixed-paint-free involutions, as part of the subject of group actions on manifolds, has been an important source of problems, examples and ideas in topology for the last four decades, and receives renewed attention every time a new technical development suggests new questions and methods ([62, 8, 24, 63J). Here we consider mainly those properties of fixed-point-free involutions that can be best studied using the techniques of surgery on manifolds. This approach to the subject was initiated by Browder and Livesay. Special attention is given here to involutions of homotopy spheres, but even for this particular case, a more general theory is very useful. Two important related topics that we do not touch here are those of involutions with fixed points, and the relationship between fixed-point-free involutions and free Sl-actions. For these topics, the reader is referred to [23J, and to [33J, [61J, [82J, respectively. The two main problems we attack are those of classification of involutions, and the existence and uniqueness of invariant submanifolds with certain properties. As will be seen, these problems are closely related. If (T, l'n) is a fixed-point-free involution of a homotopy sphere l'n, the quotient l'n/Tis called a homotopy projective space.