Studies In Perturbation Theory
Download Studies In Perturbation Theory full books in PDF, epub, and Kindle. Read online free Studies In Perturbation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : M. Konstantinov |
Publisher | : Gulf Professional Publishing |
Total Pages | : 443 |
Release | : 2003-05-20 |
Genre | : Mathematics |
ISBN | : 0080538673 |
The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds.Key features:• The first book in this field • Can be used by a variety of specialists • Material is self-contained • Results can be used in the development of reliable computational algorithms • A large number of examples and graphical illustrations are given • Written by prominent specialists in the field
Author | : James G. Simmonds |
Publisher | : Courier Corporation |
Total Pages | : 162 |
Release | : 2013-07-04 |
Genre | : Mathematics |
ISBN | : 0486315584 |
Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Author | : Sylvio Ferraz-Mello |
Publisher | : Springer Science & Business Media |
Total Pages | : 350 |
Release | : 2007-05-30 |
Genre | : Science |
ISBN | : 0387389059 |
The book is written mainly to advanced graduate and post-graduate students following courses in Perturbation Theory and Celestial Mechanics. It is also intended to serve as a guide in research work and is written in a very explicit way: all perturbation theories are given with details allowing its immediate application to real problems. In addition, they are followed by examples showing all steps of their application.
Author | : Alston S. Householder |
Publisher | : Courier Corporation |
Total Pages | : 292 |
Release | : 2006-01-01 |
Genre | : Mathematics |
ISBN | : 048645312X |
Computer science rests upon the building blocks of numerical analysis. This concise treatment by an expert covers the essentials of the solution of finite systems of linear and nonlinear equations as well as the approximate representation of functions. A final section provides 54 problems, subdivided according to chapter. 1953 edition.
Author | : Martín Lara |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 315 |
Release | : 2021-05-10 |
Genre | : Science |
ISBN | : 3110667320 |
"Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations"--Print version, page 4 of cover.
Author | : Mark H. Holmes |
Publisher | : Springer Science & Business Media |
Total Pages | : 344 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461253470 |
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.
Author | : William Paulsen |
Publisher | : CRC Press |
Total Pages | : 546 |
Release | : 2013-07-18 |
Genre | : Mathematics |
ISBN | : 1466515120 |
Beneficial to both beginning students and researchers, Asymptotic Analysis and Perturbation Theory immediately introduces asymptotic notation and then applies this tool to familiar problems, including limits, inverse functions, and integrals. Suitable for those who have completed the standard calculus sequence, the book assumes no prior knowledge o
Author | : James A. Murdock |
Publisher | : SIAM |
Total Pages | : 358 |
Release | : 1999-01-01 |
Genre | : Mathematics |
ISBN | : 9781611971095 |
Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.
Author | : Francisco M. Fernandez |
Publisher | : CRC Press |
Total Pages | : 289 |
Release | : 2000-09-19 |
Genre | : Science |
ISBN | : 1420039644 |
Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation
Author | : Lindsay A. Skinner |
Publisher | : Springer Science & Business Media |
Total Pages | : 95 |
Release | : 2011-05-11 |
Genre | : Mathematics |
ISBN | : 1441999582 |
This book is a rigorous presentation of the method of matched asymptotic expansions, the primary tool for attacking singular perturbation problems. A knowledge of conventional asymptotic analysis is assumed. The first chapter introduces the theory and is followed by four chapters of applications to ordinary differential equation problems of increasing complexity. Exercises are included as well as several Maple programs for computing the terms of the various asymptotic expansions that arise in solving the problems.