Studies in Logic and Probability

Studies in Logic and Probability
Author: George Boole
Publisher: Courier Corporation
Total Pages: 514
Release: 2012-01-01
Genre: Mathematics
ISBN: 0486488268

Authoritative account of the development of Boole's ideas in logic and probability theory ranges from The Mathematical Analysis of Logic to the end of his career. The Laws of Thought formed the most systematic statement of Boole's theories; this volume contains incomplete studies intended for a follow-up volume. 1952 edition.

Boole's Logic and Probability

Boole's Logic and Probability
Author: T. Hailperin
Publisher: Elsevier
Total Pages: 441
Release: 1986-10-01
Genre: Mathematics
ISBN: 0080880053

Since the publication of the first edition in 1976, there has been a notable increase of interest in the development of logic. This is evidenced by the several conferences on the history of logic, by a journal devoted to the subject, and by an accumulation of new results. This increased activity and the new results - the chief one being that Boole's work in probability is best viewed as a probability logic - were influential circumstances conducive to a new edition.Chapter 1, presenting Boole's ideas on a mathematical treatment of logic, from their emergence in his early 1847 work on through to his immediate successors, has been considerably enlarged. Chapter 2 includes additional discussion of the ``uninterpretable'' notion, both semantically and syntactically. Chapter 3 now includes a revival of Boole's abandoned propositional logic and, also, a discussion of his hitherto unnoticed brush with ancient formal logic. Chapter 5 has an improved explanation of why Boole's probability method works. Chapter 6, Applications and Probability Logic, is a new addition. Changes from the first edition have brought about a three-fold increase in the bibliography.

An Introduction to Probability and Inductive Logic

An Introduction to Probability and Inductive Logic
Author: Ian Hacking
Publisher: Cambridge University Press
Total Pages: 326
Release: 2001-07-02
Genre: Mathematics
ISBN: 9780521775014

An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.

Handbook of the Logic of Argument and Inference

Handbook of the Logic of Argument and Inference
Author: R.H. Johnson
Publisher: Elsevier
Total Pages: 509
Release: 2002-09-11
Genre: Computers
ISBN: 0080532918

The Handbook of the Logic of Argument and Inference is an authoritative reference work in a single volume, designed for the attention of senior undergraduates, graduate students and researchers in all the leading research areas concerned with the logic of practical argument and inference. After an introductory chapter, the role of standard logics is surveyed in two chapters. These chapters can serve as a mini-course for interested readers, in deductive and inductive logic, or as a refresher. Then follow two chapters of criticism; one the internal critique and the other the empirical critique. The first deals with objections to standard logics (as theories of argument and inference) arising from the research programme in philosophical logic. The second canvasses criticisms arising from work in cognitive and experimental psychology. The next five chapters deal with developments in dialogue logic, interrogative logic, informal logic, probability logic and artificial intelligence. The last chapter surveys formal approaches to practical reasoning and anticipates possible future developments. Taken as a whole the Handbook is a single-volume indication of the present state of the logic of argument and inference at its conceptual and theoretical best. Future editions will periodically incorporate significant new developments.

Probability Theory

Probability Theory
Author:
Publisher: Allied Publishers
Total Pages: 436
Release: 2013
Genre:
ISBN: 9788177644517

Probability theory

Basic Discrete Mathematics: Logic, Set Theory, And Probability

Basic Discrete Mathematics: Logic, Set Theory, And Probability
Author: Richard Kohar
Publisher: World Scientific Publishing Company
Total Pages: 733
Release: 2016-06-15
Genre: Mathematics
ISBN: 9814730416

This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George PĆ³lya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix.'Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning.'- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math

A Logical Introduction to Probability and Induction

A Logical Introduction to Probability and Induction
Author: Franz Huber
Publisher:
Total Pages: 305
Release: 2019
Genre: Philosophy
ISBN: 0190845392

A Logical Introduction to Probability and Induction is a textbook on the mathematics of the probability calculus and its applications in philosophy. On the mathematical side, the textbook introduces these parts of logic and set theory that are needed for a precise formulation of the probability calculus. On the philosophical side, the main focus is on the problem of induction and its reception in epistemology and the philosophy of science. Particular emphasis is placed on the means-end approach to the justification of inductive inference rules. In addition, the book discusses the major interpretations of probability. These are philosophical accounts of the nature of probability that interpret the mathematical structure of the probability calculus. Besides the classical and logical interpretation, they include the interpretation of probability as chance, degree of belief, and relative frequency. The Bayesian interpretation of probability as degree of belief locates probability in a subject's mind. It raises the question why her degrees of belief ought to obey the probability calculus. In contrast to this, chance and relative frequency belong to the external world. While chance is postulated by theory, relative frequencies can be observed empirically. A Logical Introduction to Probability and Induction aims to equip students with the ability to successfully carry out arguments. It begins with elementary deductive logic and uses it as basis for the material on probability and induction. Throughout the textbook results are carefully proved using the inference rules introduced at the beginning, and students are asked to solve problems in the form of 50 exercises. An instructor's manual contains the solutions to these exercises as well as suggested exam questions. The book does not presuppose any background in mathematics, although sections 10.3-10.9 on statistics are technically sophisticated and optional. The textbook is suitable for lower level undergraduate courses in philosophy and logic.

Logic with a Probability Semantics

Logic with a Probability Semantics
Author: Theodore Hailperin
Publisher: Rowman & Littlefield
Total Pages: 124
Release: 2011
Genre: Mathematics
ISBN: 1611460107

The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word "sentential" in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ("no," "and," "or," etc.) but not including quantifiers ("for all," "there is"). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion basedon taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ("for all," and "there is") whose variables range over atomic sentences, notentities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for anyprobability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language. The chapter concludes by showing the Borel's early denumerableprobability concept (1909) can be justified by its being, in essence, close to Hailperin's probability result applied to denumerable language. The final chapter introduces the notion of conditional-probability to a language having quantifiers of the kind