Student Solutions Manual to accompany Statistics: From Data to Decision, 2e

Student Solutions Manual to accompany Statistics: From Data to Decision, 2e
Author: Ann E. Watkins
Publisher: John Wiley & Sons
Total Pages: 371
Release: 2010-04-26
Genre: Mathematics
ISBN: 047053060X

This book teaches statistics with a modern, data-analytic approach that uses graphing calculators and statistical software. It allows more emphasis to be put on statistical concepts and data analysis than on following recipes for calculations. This gives readers a more realistic understanding of both the theoretical and practical applications of statistics, giving them the ability to master the subject.

Student Solutions Manual to accompany Statistics: Unlocking the Power of Data, 2e

Student Solutions Manual to accompany Statistics: Unlocking the Power of Data, 2e
Author: Robin H. Lock
Publisher: John Wiley & Sons
Total Pages: 290
Release: 2016-11-14
Genre: Mathematics
ISBN: 1119308917

This is the Student Solutions Manual to Accompany Statistics: Unlocking the Power of Data, 2nd Edition. Statistics, 2nd Edition moves the curriculum in innovative ways while still looking relatively familiar. Statistics, 2e utilizes intuitive methods to introduce the fundamental idea of statistical inference. These intuitive methods are enabled through statistical software and are accessible at very early stages of a course. The text also includes the more traditional methods such as t-tests, chi-square tests, etc., but only after students have developed a strong intuitive understanding of inference through randomization methods. The text is designed for use in a one-semester introductory statistics course. The focus throughout is on data analysis and the primary goal is to enable students to effectively collect data, analyze data, and interpret conclusions drawn from data. The text is driven by real data and real applications. Students completing the course should be able to accurately interpret statistical results and to analyze straightforward data sets.

Statistical Intervals

Statistical Intervals
Author: William Q. Meeker
Publisher: John Wiley & Sons
Total Pages: 648
Release: 2017-04-10
Genre: Mathematics
ISBN: 0471687170

Describes statistical intervals to quantify sampling uncertainty,focusing on key application needs and recently developed methodology in an easy-to-apply format Statistical intervals provide invaluable tools for quantifying sampling uncertainty. The widely hailed first edition, published in 1991, described the use and construction of the most important statistical intervals. Particular emphasis was given to intervals—such as prediction intervals, tolerance intervals and confidence intervals on distribution quantiles—frequently needed in practice, but often neglected in introductory courses. Vastly improved computer capabilities over the past 25 years have resulted in an explosion of the tools readily available to analysts. This second edition—more than double the size of the first—adds these new methods in an easy-to-apply format. In addition to extensive updating of the original chapters, the second edition includes new chapters on: Likelihood-based statistical intervals Nonparametric bootstrap intervals Parametric bootstrap and other simulation-based intervals An introduction to Bayesian intervals Bayesian intervals for the popular binomial, Poisson and normal distributions Statistical intervals for Bayesian hierarchical models Advanced case studies, further illustrating the use of the newly described methods New technical appendices provide justification of the methods and pathways to extensions and further applications. A webpage directs readers to current readily accessible computer software and other useful information. Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition is an up-to-date working guide and reference for all who analyze data, allowing them to quantify the uncertainty in their results using statistical intervals.

Loss Models: From Data to Decisions, 5e Student Solutions Manual

Loss Models: From Data to Decisions, 5e Student Solutions Manual
Author: Stuart A. Klugman
Publisher: John Wiley & Sons
Total Pages: 218
Release: 2018-12-18
Genre: Business & Economics
ISBN: 1119538033

Solutions manual to accompany a text with comprehensive coverage of actuarial modeling techniques The Student Solutions Manual to Accompany Loss Models: From Data to Decisions covers solutions related to the companion text. The manual and text are designed for use by actuaries and those studying for the profession. Readers can learn modeling techniques used across actuarial science. Knowledge of the techniques is also beneficial for those who use loss data to build models for risk assessment.

Introductory Statistics 2e

Introductory Statistics 2e
Author: Barbara Illowsky
Publisher:
Total Pages: 2106
Release: 2023-12-13
Genre: Mathematics
ISBN:

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Modern Regression Methods

Modern Regression Methods
Author: Thomas P. Ryan
Publisher: Wiley-Interscience
Total Pages: 554
Release: 1997
Genre: Mathematics
ISBN:

The most comprehensive book available on state-of-the-art regression methodology, complete with exercises and solutions This combination book and disk set presents the full range of regression techniques available today to practitioners, researchers, and students of this popular and ever-changing field. Featuring a strong data analysis orientation and a more comprehensive treatment of regression diagnostics than is found in other texts, Modern Regression Methods contains a wealth of material assembled here for the first time, including recently developed techniques and some new methods introduced by the author, as well as fresh approaches to standard concepts. With thorough analyses of real-world data sets and many exercises with worked solutions, this unique resource reinforces learning while providing you with crucial hands-on experience in the practical application of skills. The book offers: In-depth treatment of standard regression methods, including diagnostics, transformations, ridge regression, and variable selection techniques A detailed examination of nonlinear regression, robust regression, and logistic regression, including both exact and maximum likelihood approaches for logistic regression New graphical techniques and transformation strategies for multiple regression and a survey of nonparametric regression Experimental designs for regression Minitab macros to facilitate understanding and use of many of the new methods that are presented Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Modern Regression Methods was among those chosen.

Introduction to Statistical Investigations

Introduction to Statistical Investigations
Author: Nathan Tintle
Publisher: Wiley Global Education
Total Pages: 699
Release: 2015-12-17
Genre: Mathematics
ISBN: 1119154316

Introduction to Statistical Investigations leads students to learn about the process of conducting statistical investigations from data collection, to exploring data, to statistical inference, to drawing appropriate conclusions. The text is designed for a one-semester introductory statistics course. It focuses on genuine research studies, active learning, and effective use of technology. Simulations and randomization tests introduce statistical inference, yielding a strong conceptual foundation that bridges students to theory-based inference approaches. Repetition allows students to see the logic and scope of inference. This implementation follows the GAISE recommendations endorsed by the American Statistical Association.

Biometrics

Biometrics
Author:
Publisher:
Total Pages: 740
Release: 1990
Genre: Biometry
ISBN:

Emphasizes the role of statistics and mathematics in the biological sciences.

Introductory Statistics for Business and Economics

Introductory Statistics for Business and Economics
Author: Thomas H. Wonnacott
Publisher:
Total Pages: 126
Release: 1984-05
Genre:
ISBN: 9780471809883

This Fourth Edition includes new sections on graphs, robust estimation, expected value and the bootstrap, in addition to new material on the use of computers. The regression model is well covered, including both nonlinear and multiple regression. The chapters contain many real-life examples and are relatively self-contained, making adaptable to a variety of courses.

The Elements of Statistical Learning

The Elements of Statistical Learning
Author: Trevor Hastie
Publisher: Springer Science & Business Media
Total Pages: 545
Release: 2013-11-11
Genre: Mathematics
ISBN: 0387216065

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.