Structure In Complex Function Spaces And Algebras
Download Structure In Complex Function Spaces And Algebras full books in PDF, epub, and Kindle. Read online free Structure In Complex Function Spaces And Algebras ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John Wermer |
Publisher | : Springer Science & Business Media |
Total Pages | : 169 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 1475738781 |
During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas.
Author | : R. Delanghe |
Publisher | : Springer Science & Business Media |
Total Pages | : 501 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401129223 |
This volume describes the substantial developments in Clifford analysis which have taken place during the last decade and, in particular, the role of the spin group in the study of null solutions of real and complexified Dirac and Laplace operators. The book has six main chapters. The first two (Chapters 0 and I) present classical results on real and complex Clifford algebras and show how lower-dimensional real Clifford algebras are well-suited for describing basic geometric notions in Euclidean space. Chapters II and III illustrate how Clifford analysis extends and refines the computational tools available in complex analysis in the plane or harmonic analysis in space. In Chapter IV the concept of monogenic differential forms is generalized to the case of spin-manifolds. Chapter V deals with analysis on homogeneous spaces, and shows how Clifford analysis may be connected with the Penrose transform. The volume concludes with some Appendices which present basic results relating to the algebraic and analytic structures discussed. These are made accessible for computational purposes by means of computer algebra programmes written in REDUCE and are contained on an accompanying floppy disk.
Author | : Andreas Kriegl |
Publisher | : American Mathematical Society |
Total Pages | : 631 |
Release | : 2024-08-15 |
Genre | : Mathematics |
ISBN | : 1470478935 |
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Author | : Krzysztof Jarosz |
Publisher | : American Mathematical Soc. |
Total Pages | : 256 |
Release | : 2011-07-18 |
Genre | : Mathematics |
ISBN | : 0821852515 |
This volume contains the proceedings of the Sixth Conference on Function Spaces, which was held from May 18-22, 2010, at Southern Illinois University at Edwardsville. The papers cover a broad range of topics, including spaces and algebras of analytic functions of one and of many variables (and operators on such spaces), spaces of integrable functions, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces, and other related subjects.
Author | : Li Zhong |
Publisher | : #N/A |
Total Pages | : 596 |
Release | : 1992-03-31 |
Genre | : |
ISBN | : 9814555827 |
Author | : Daniel Huybrechts |
Publisher | : Springer Science & Business Media |
Total Pages | : 336 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9783540212904 |
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)
Author | : Tanja Eisner |
Publisher | : Birkhäuser |
Total Pages | : 240 |
Release | : 2016-09-24 |
Genre | : Mathematics |
ISBN | : 3319313835 |
This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.
Author | : Krzysztof Jarov |
Publisher | : CRC Press |
Total Pages | : 450 |
Release | : 1991-12-23 |
Genre | : Mathematics |
ISBN | : 9780824786120 |
This book is based on the conference on Function Spaces held at Southern Illinois University at Edwardsville, in April, 1990. It is designed to cover a wide range of topics, including spaces of analytic functions, isometries of function spaces, geometry of Banach spaces, and Banach algebras.
Author | : Nik Weaver |
Publisher | : World Scientific |
Total Pages | : 242 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9789810238735 |
The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.
Author | : T.V. Tonev |
Publisher | : Elsevier |
Total Pages | : 313 |
Release | : 1992-03-02 |
Genre | : Mathematics |
ISBN | : 0080872832 |
Treated in this volume are selected topics in analytic &Ggr;-almost-periodic functions and their representations as &Ggr;-analytic functions in the big-plane; n-tuple Shilov boundaries of function spaces, minimal norm principle for vector-valued functions and their applications in the study of vector-valued functions and n-tuple polynomial and rational hulls. Applications to the problem of existence of n-dimensional complex analytic structures, analytic &Ggr;-almost-periodic structures and structures of &Ggr;-analytic big-manifolds respectively in commutative Banach algebra spectra are also discussed.