Advanced Mathematical Thinking

Advanced Mathematical Thinking
Author: David Tall
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 2006-04-11
Genre: Education
ISBN: 0306472031

This book is the first major study of advanced mathematical thinking as performed by mathematicians and taught to students in senior high school and university. Topics covered include the psychology of advanced mathematical thinking, the processes involved, mathematical creativity, proof, the role of definitions, symbols, and reflective abstraction. It is highly appropriate for the college professor in mathematics or the general mathematics educator.

Handbook of Research on the Psychology of Mathematics Education

Handbook of Research on the Psychology of Mathematics Education
Author: Angel Gutiérrez
Publisher: Sense Publishers
Total Pages: 538
Release: 2006
Genre: Education
ISBN: 9077874194

Compilation of the research produced by the International Group for the Psychology of Mathematics Education (PME) since its creation in 1976. The first three sections summarize cognitively-oriented research on learning and teaching specific content areas, transversal areas, and based on technology-rich environments. The fourth section is devoted to the research on social, affective, cultural and cognitive aspects of mathematics education. The fifth section includes two chapters summarizing the PME research on teacher training and professional life of mathematics teachers.

How Humans Learn to Think Mathematically

How Humans Learn to Think Mathematically
Author: David Tall
Publisher: Cambridge University Press
Total Pages: 483
Release: 2013-09-02
Genre: Education
ISBN: 1107035708

How Humans Learn to Think Mathematically describes the development of mathematical thinking from the young child to the sophisticated adult. Professor David Tall reveals the reasons why mathematical concepts that make sense in one context may become problematic in another. For example, a child's experience of whole number arithmetic successively affects subsequent understanding of fractions, negative numbers, algebra, and the introduction of definitions and proof. Tall's explanations for these developments are accessible to a general audience while encouraging specialists to relate their areas of expertise to the full range of mathematical thinking. The book offers a comprehensive framework for understanding mathematical growth, from practical beginnings through theoretical developments, to the continuing evolution of mathematical thinking at the highest level.

Mathematics for Human Flourishing

Mathematics for Human Flourishing
Author: Francis Su
Publisher: Yale University Press
Total Pages: 287
Release: 2020-01-07
Genre: Mathematics
ISBN: 0300237138

"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.

Forms of Mathematical Knowledge

Forms of Mathematical Knowledge
Author: Dina Tirosh
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2013-03-14
Genre: Education
ISBN: 940171584X

What mathematics is entailed in knowing to act in a moment? Is tacit, rhetorical knowledge significant in mathematics education? What is the role of intuitive models in understanding, learning and teaching mathematics? Are there differences between elementary and advanced mathematical thinking? Why can't students prove? What are the characteristics of teachers' ways of knowing? This book focuses on various types of knowledge that are significant for learning and teaching mathematics. The first part defines, discusses and contrasts psychological, philosophical and didactical issues related to various types of knowledge involved in the learning of mathematics. The second part describes ideas about forms of mathematical knowledge that are important for teachers to know and ways of implementing such ideas in preservice and in-service education. The chapters provide a wide overview of current thinking about mathematics learning and teaching which is of interest for researchers in mathematics education and mathematics educators. Topics covered include the role of intuition in mathematics learning and teaching, the growth from elementary to advanced mathematical thinking, the significance of genres and rhetoric for the learning of mathematics and the characterization of teachers' ways of knowing.

Introduction to Mathematical Thinking

Introduction to Mathematical Thinking
Author: Keith J. Devlin
Publisher:
Total Pages: 0
Release: 2012
Genre: Mathematics
ISBN: 9780615653631

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.

Rigorous Mathematical Thinking

Rigorous Mathematical Thinking
Author: James T. Kinard
Publisher: Cambridge University Press
Total Pages: 210
Release: 2008-06-02
Genre: Psychology
ISBN: 1139472399

This book demonstrates how rigorous mathematical thinking can be fostered through the development of students' cognitive tools and operations. This approach seems to be particularly effective with socially disadvantaged and culturally different students. The authors argue that children's cognitive functions cannot be viewed as following a natural maturational path: they should be actively constructed during the educational process. The Rigorous Mathematical Thinking (RMT) model is based on two major theoretical approaches – Vygotsky's theory of psychological tools and Feuerstein's concept of mediated learning experience. The book starts with general cognitive tools that are essential for all types of problem solving and then moves to mathematically specific cognitive tools and methods for utilizing these tools for mathematical conceptual formation. The application of the RMT model in various urban classrooms demonstrates how mathematics education standards can be reached even by the students with a history of educational failure who were considered hopeless underachievers.

Making the Connection

Making the Connection
Author: Marilyn Paula Carlson
Publisher: MAA
Total Pages: 340
Release: 2008
Genre: Mathematics
ISBN: 9780883851838

The chapters in this volume convey insights from mathematics education research that have direct implications for anyone interested in improving teaching and learning in undergraduate mathematics. This synthesis of research on learning and teaching mathematics provides relevant information for any math department or individual faculty member who is working to improve introductory proof courses, the longitudinal coherence of precalculus through differential equations, students' mathematical thinking and problem-solving abilities, and students' understanding of fundamental ideas such as variable and rate of change. Other chapters include information about programs that have been successful in supporting students' continued study of mathematics. The authors provide many examples and ideas to help the reader infuse the knowledge from mathematics education research into mathematics teaching practice. University mathematicians and community college faculty spend much of their time engaged in work to improve their teaching. Frequently, they are left to their own experiences and informal conversations with colleagues to develop new approaches to support student learning and their continuation in mathematics. Over the past 30 years, research in undergraduate mathematics education has produced knowledge about the development of mathematical understandings and models for supporting students' mathematical learning. Currently, very little of this knowledge is affecting teaching practice. We hope that this volume will open a meaningful dialogue between researchers and practitioners toward the goal of realizing improvements in undergraduate mathematics curriculum and instruction.