Data Strategy

Data Strategy
Author: Bernard Marr
Publisher: Kogan Page Publishers
Total Pages: 201
Release: 2017-04-03
Genre: Business & Economics
ISBN: 0749479868

BRONZE RUNNER UP: Axiom Awards 2018 - Business Technology Category Less than 0.5 per cent of all data is currently analyzed and used. However, business leaders and managers cannot afford to be unconcerned or sceptical about data. Data is revolutionizing the way we work and it is the companies that view data as a strategic asset that will survive and thrive. Data Strategy is a must-have guide to creating a robust data strategy. Explaining how to identify your strategic data needs, what methods to use to collect the data and, most importantly, how to translate your data into organizational insights for improved business decision-making and performance, this is essential reading for anyone aiming to leverage the value of their business data and gain competitive advantage. Packed with case studies and real-world examples, advice on how to build data competencies in an organization and crucial coverage of how to ensure your data doesn't become a liability, Data Strategy will equip any organization with the tools and strategies it needs to profit from Big Data, analytics and the Internet of Things (IoT).

Principles of Strategic Data Science

Principles of Strategic Data Science
Author: Dr Peter Prevos
Publisher: Packt Publishing Ltd
Total Pages: 104
Release: 2019-06-03
Genre: Computers
ISBN: 1838985506

Take the strategic and systematic approach to analyze data to solve business problems Key FeaturesGain detailed information about the theory of data scienceAugment your coding knowledge with practical data science techniques for efficient data analysis Learn practical ways to strategically and systematically use dataBook Description Principles of Strategic Data Science is created to help you join the dots between mathematics, programming, and business analysis. With a unique approach that bridges the gap between mathematics and computer science, this book takes you through the entire data science pipeline. The book begins by explaining what data science is and how organizations can use it to revolutionize the way they use their data. It then discusses the criteria for the soundness of data products and how to best visualize information. As you progress, you’ll discover the strategic aspects of data science by learning the five-phase framework that enables you to enhance the value you extract from data. The final chapter of the book discusses the role of a data science manager in helping an organization take the data-driven approach. By the end of this book, you’ll have a good understanding of data science and how it can enable you to extract value from your data. What you will learnGet familiar with the five most important steps of data scienceUse the Conway diagram to visualize the technical skills of the data science teamUnderstand the limitations of data science from a mathematical and ethical perspectiveGet a quick overview of machine learningGain insight into the purpose of using data science in your workUnderstand the role of data science managers and their expectationsWho this book is for This book is ideal for data scientists and data analysts who are looking for a practical guide to strategically and systematically use data. This book is also useful for those who want to understand in detail what is data science and how can an organization take the data-driven approach. Prior programming knowledge of Python and R is assumed.

DAMA-DMBOK

DAMA-DMBOK
Author: Dama International
Publisher:
Total Pages: 628
Release: 2017
Genre: Database management
ISBN: 9781634622349

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.

Non-Invasive Data Governance

Non-Invasive Data Governance
Author: Robert S. Seiner
Publisher: Technics Publications
Total Pages: 147
Release: 2014-09-01
Genre: Computers
ISBN: 1634620453

Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.

Strategic Data Management for Successful Healthcare Outcomes

Strategic Data Management for Successful Healthcare Outcomes
Author: Hema Lakkaraju
Publisher: Business Expert Press
Total Pages: 124
Release: 2021-11-30
Genre: Business & Economics
ISBN: 1637421508

Strategy is paramount for successful modern healthcare data management. The healthcare landscape continues to evolve in an effort to accommodate our ever-connected world. A digital healthcare system poses new challenges and exposes existing issues as professionals—like you—strive to solve concerns. This book recognizes the unique tasks of dedicated professionals while attempting to decrease confusion on this key topic. It’s time to discuss why strategy is important for modern healthcare data management, how strategy can create new business or upscale a business in healthcare data management, and how these tactics assist your business in gaining a competitive advantage. Cut through the frustration generated by the staggering amount of healthcare data currently being created, collected, and distributed—this book will teach you how. This book will help you to understand: Critical types of data How to strategically manage data How to build better patient care Tips for improving performance New ways for your business to thrive And so much more...

Enterprise Master Data Management

Enterprise Master Data Management
Author: Allen Dreibelbis
Publisher: Pearson Education
Total Pages: 833
Release: 2008-06-05
Genre: Business & Economics
ISBN: 0132704277

The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration

The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement
Author: David Loshin
Publisher: Elsevier
Total Pages: 423
Release: 2010-11-22
Genre: Computers
ISBN: 0080920349

The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Data Strategy in Colleges and Universities

Data Strategy in Colleges and Universities
Author: Kristina Powers
Publisher: Routledge
Total Pages: 175
Release: 2019-10-16
Genre: Education
ISBN: 042979441X

This valuable resource helps institutional leaders understand and implement a data strategy at their college or university that maximizes benefits to all creators and users of data. Exploring key considerations necessary for coordination of fragmented resources and the development of an effective, cohesive data strategy, this book brings together professionals from different higher education experiences and perspectives, including academic, administration, institutional research, information technology, and student affairs. Focusing on critical elements of data strategy and governance, each chapter in Data Strategy in Colleges and Universities helps higher education leaders address a frustrating problem with much-needed solutions for fostering a collaborative, data-driven strategy.

Data Strategy

Data Strategy
Author: Sid Adelman
Publisher: Addison-Wesley Professional
Total Pages: 392
Release: 2005
Genre: Computers
ISBN:

Without a data strategy, the people within an organization have no guidelines for making decisions that are absolutely crucial to the success of the IT organization and to the entire organization. The absence of a strategy gives a blank check to those who want to pursue their own agendas, including those who want to try new database management systems, new technologies (often unproven), and new tools. This type of environment provides no hope for success. Data Strategy should result in the development of systems with less risk, higher quality systems, and reusability of assets. This is key to keeping cost and maintenance down, thus running lean and mean. Data Strategy provides a CIO with a rationale to counter arguments for immature technology and data strategies that are inconsistent with existing strategies. This book uses case studies and best practices to give the reader the tools they need to create the best strategy for the organization.