Building Python Real-Time Applications with Storm

Building Python Real-Time Applications with Storm
Author: Kartik Bhatnagar
Publisher: Packt Publishing Ltd
Total Pages: 122
Release: 2015-12-02
Genre: Computers
ISBN: 1784392871

Learn to process massive real-time data streams using Storm and Python—no Java required! About This Book Learn to use Apache Storm and the Python Petrel library to build distributed applications that process large streams of data Explore sample applications in real-time and analyze them in the popular NoSQL databases MongoDB and Redis Discover how to apply software development best practices to improve performance, productivity, and quality in your Storm projects Who This Book Is For This book is intended for Python developers who want to benefit from Storm's real-time data processing capabilities. If you are new to Python, you'll benefit from the attention to key supporting tools and techniques such as automated testing, virtual environments, and logging. If you're an experienced Python developer, you'll appreciate the thorough and detailed examples What You Will Learn Install Storm and learn about the prerequisites Get to know the components of a Storm topology and how to control the flow of data between them Ingest Twitter data directly into Storm Use Storm with MongoDB and Redis Build topologies and run them in Storm Use an interactive graphical debugger to debug your topology as it's running in Storm Test your topology components outside of Storm Configure your topology using YAML In Detail Big data is a trending concept that everyone wants to learn about. With its ability to process all kinds of data in real time, Storm is an important addition to your big data “bag of tricks.” At the same time, Python is one of the fastest-growing programming languages today. It has become a top choice for both data science and everyday application development. Together, Storm and Python enable you to build and deploy real-time big data applications quickly and easily. You will begin with some basic command tutorials to set up storm and learn about its configurations in detail. You will then go through the requirement scenarios to create a Storm cluster. Next, you'll be provided with an overview of Petrel, followed by an example of Twitter topology and persistence using Redis and MongoDB. Finally, you will build a production-quality Storm topology using development best practices. Style and approach This book takes an easy-to-follow and a practical approach to help you understand all the concepts related to Storm and Python.

Storm Real-time Processing Cookbook

Storm Real-time Processing Cookbook
Author: Quinton Anderson
Publisher:
Total Pages: 0
Release: 2013
Genre: Big data
ISBN: 9781782164425

A cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

Real-Time Big Data Analytics

Real-Time Big Data Analytics
Author: Sumit Gupta
Publisher: Packt Publishing Ltd
Total Pages: 326
Release: 2016-02-26
Genre: Computers
ISBN: 1784397407

Design, process, and analyze large sets of complex data in real time About This Book Get acquainted with transformations and database-level interactions, and ensure the reliability of messages processed using Storm Implement strategies to solve the challenges of real-time data processing Load datasets, build queries, and make recommendations using Spark SQL Who This Book Is For If you are a Big Data architect, developer, or a programmer who wants to develop applications/frameworks to implement real-time analytics using open source technologies, then this book is for you. What You Will Learn Explore big data technologies and frameworks Work through practical challenges and use cases of real-time analytics versus batch analytics Develop real-word use cases for processing and analyzing data in real-time using the programming paradigm of Apache Storm Handle and process real-time transactional data Optimize and tune Apache Storm for varied workloads and production deployments Process and stream data with Amazon Kinesis and Elastic MapReduce Perform interactive and exploratory data analytics using Spark SQL Develop common enterprise architectures/applications for real-time and batch analytics In Detail Enterprise has been striving hard to deal with the challenges of data arriving in real time or near real time. Although there are technologies such as Storm and Spark (and many more) that solve the challenges of real-time data, using the appropriate technology/framework for the right business use case is the key to success. This book provides you with the skills required to quickly design, implement and deploy your real-time analytics using real-world examples of big data use cases. From the beginning of the book, we will cover the basics of varied real-time data processing frameworks and technologies. We will discuss and explain the differences between batch and real-time processing in detail, and will also explore the techniques and programming concepts using Apache Storm. Moving on, we'll familiarize you with “Amazon Kinesis” for real-time data processing on cloud. We will further develop your understanding of real-time analytics through a comprehensive review of Apache Spark along with the high-level architecture and the building blocks of a Spark program. You will learn how to transform your data, get an output from transformations, and persist your results using Spark RDDs, using an interface called Spark SQL to work with Spark. At the end of this book, we will introduce Spark Streaming, the streaming library of Spark, and will walk you through the emerging Lambda Architecture (LA), which provides a hybrid platform for big data processing by combining real-time and precomputed batch data to provide a near real-time view of incoming data. Style and approach This step-by-step is an easy-to-follow, detailed tutorial, filled with practical examples of basic and advanced features. Each topic is explained sequentially and supported by real-world examples and executable code snippets.

LLVM Cookbook

LLVM Cookbook
Author: Mayur Pandey
Publisher: Packt Publishing Ltd
Total Pages: 296
Release: 2015-05-30
Genre: Computers
ISBN: 1785286404

The book is for compiler programmers who are familiar with concepts of compilers and want to indulge in understanding, exploring, and using LLVM infrastructure in a meaningful way in their work. This book is also for programmers who are not directly involved in compiler projects but are often involved in development phases where they write thousands of lines of code. With knowledge of how compilers work, they will be able to code in an optimal way and improve performance with clean code.

Practical Real-time Data Processing and Analytics

Practical Real-time Data Processing and Analytics
Author: Shilpi Saxena
Publisher: Packt Publishing Ltd
Total Pages: 354
Release: 2017-09-28
Genre: Computers
ISBN: 1787289869

A practical guide to help you tackle different real-time data processing and analytics problems using the best tools for each scenario About This Book Learn about the various challenges in real-time data processing and use the right tools to overcome them This book covers popular tools and frameworks such as Spark, Flink, and Apache Storm to solve all your distributed processing problems A practical guide filled with examples, tips, and tricks to help you perform efficient Big Data processing in real-time Who This Book Is For If you are a Java developer who would like to be equipped with all the tools required to devise an end-to-end practical solution on real-time data streaming, then this book is for you. Basic knowledge of real-time processing would be helpful, and knowing the fundamentals of Maven, Shell, and Eclipse would be great. What You Will Learn Get an introduction to the established real-time stack Understand the key integration of all the components Get a thorough understanding of the basic building blocks for real-time solution designing Garnish the search and visualization aspects for your real-time solution Get conceptually and practically acquainted with real-time analytics Be well equipped to apply the knowledge and create your own solutions In Detail With the rise of Big Data, there is an increasing need to process large amounts of data continuously, with a shorter turnaround time. Real-time data processing involves continuous input, processing and output of data, with the condition that the time required for processing is as short as possible. This book covers the majority of the existing and evolving open source technology stack for real-time processing and analytics. You will get to know about all the real-time solution aspects, from the source to the presentation to persistence. Through this practical book, you'll be equipped with a clear understanding of how to solve challenges on your own. We'll cover topics such as how to set up components, basic executions, integrations, advanced use cases, alerts, and monitoring. You'll be exposed to the popular tools used in real-time processing today such as Apache Spark, Apache Flink, and Storm. Finally, you will put your knowledge to practical use by implementing all of the techniques in the form of a practical, real-world use case. By the end of this book, you will have a solid understanding of all the aspects of real-time data processing and analytics, and will know how to deploy the solutions in production environments in the best possible manner. Style and Approach In this practical guide to real-time analytics, each chapter begins with a basic high-level concept of the topic, followed by a practical, hands-on implementation of each concept, where you can see the working and execution of it. The book is written in a DIY style, with plenty of practical use cases, well-explained code examples, and relevant screenshots and diagrams.

Storm Applied

Storm Applied
Author: Matthew Jankowski
Publisher: Simon and Schuster
Total Pages: 408
Release: 2015-03-30
Genre: Computers
ISBN: 163835118X

Summary Storm Applied is a practical guide to using Apache Storm for the real-world tasks associated with processing and analyzing real-time data streams. This immediately useful book starts by building a solid foundation of Storm essentials so that you learn how to think about designing Storm solutions the right way from day one. But it quickly dives into real-world case studies that will bring the novice up to speed with productionizing Storm. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. Summary Storm Applied is a practical guide to using Apache Storm for the real-world tasks associated with processing and analyzing real-time data streams. This immediately useful book starts by building a solid foundation of Storm essentials so that you learn how to think about designing Storm solutions the right way from day one. But it quickly dives into real-world case studies that will bring the novice up to speed with productionizing Storm. About the Technology It's hard to make sense out of data when it's coming at you fast. Like Hadoop, Storm processes large amounts of data but it does it reliably and in real time, guaranteeing that every message will be processed. Storm allows you to scale with your data as it grows, making it an excellent platform to solve your big data problems. About the Book Storm Applied is an example-driven guide to processing and analyzing real-time data streams. This immediately useful book starts by teaching you how to design Storm solutions the right way. Then, it quickly dives into real-world case studies that show you how to scale a high-throughput stream processor, ensure smooth operation within a production cluster, and more. Along the way, you'll learn to use Trident for stateful stream processing, along with other tools from the Storm ecosystem. This book moves through the basics quickly. While prior experience with Storm is not assumed, some experience with big data and real-time systems is helpful. What's Inside Mapping real problems to Storm components Performance tuning and scaling Practical troubleshooting and debugging Exactly-once processing with Trident About the Authors Sean Allen, Matthew Jankowski, and Peter Pathirana lead the development team for a high-volume, search-intensive commercial web application at TheLadders. Table of Contents Introducing Storm Core Storm concepts Topology design Creating robust topologies Moving from local to remote topologies Tuning in Storm Resource contention Storm internals Trident

Clojure Cookbook

Clojure Cookbook
Author: Luke VanderHart
Publisher: "O'Reilly Media, Inc."
Total Pages: 560
Release: 2014-03-05
Genre: Computers
ISBN: 1449366406

With more than 150 detailed recipes, this cookbook shows experienced Clojure developers how to solve a variety of programming tasks with this JVM language. The solutions cover everything from building dynamic websites and working with databases to network communication, cloud computing, and advanced testing strategies. And more than 60 of the world’s best Clojurians contributed recipes. Each recipe includes code that you can use right away, along with a discussion on how and why the solution works, so you can adapt these patterns, approaches, and techniques to situations not specifically covered in this cookbook. Master built-in primitive and composite data structures Create, develop and publish libraries, using the Leiningen tool Interact with the local computer that’s running your application Manage network communication protocols and libraries Use techniques for connecting to and using a variety of databases Build and maintain dynamic websites, using the Ring HTTP server library Tackle application tasks such as packaging, distributing, profiling, and logging Take on cloud computing and heavyweight distributed data crunching Dive into unit, integration, simulation, and property-based testing Clojure Cookbook is a collaborative project with contributions from some of the world’s best Clojurians, whose backgrounds range from aerospace to social media, banking to robotics, AI research to e-commerce.

Real-Time Streaming with Apache Kafka, Spark, and Storm

Real-Time Streaming with Apache Kafka, Spark, and Storm
Author: Brindha Priyadarshini Jeyaraman
Publisher: BPB Publications
Total Pages: 196
Release: 2021-08-20
Genre: Computers
ISBN: 9390684595

Build a platform using Apache Kafka, Spark, and Storm to generate real-time data insights and view them through Dashboards. KEY FEATURES ● Extensive practical demonstration of Apache Kafka concepts, including producer and consumer examples. ● Includes graphical examples and explanations of implementing Kafka Producer and Kafka Consumer commands and methods. ● Covers integration and implementation of Spark-Kafka and Kafka-Storm architectures. DESCRIPTION Real-Time Streaming with Apache Kafka, Spark, and Storm is a book that provides an overview of the real-time streaming concepts and architectures of Apache Kafka, Storm, and Spark. The readers will learn how to build systems that can process data streams in real time using these technologies. They will be able to process a large amount of real-time data and perform analytics or generate insights as a result of this. The architecture of Kafka and its various components are described in detail. A Kafka Cluster installation and configuration will be demonstrated. The Kafka publisher-subscriber system will be implemented in the Eclipse IDE using the Command Line and Java. The book discusses the architecture of Apache Storm, the concepts of Spout and Bolt, as well as their applications in a Transaction Alert System. It also describes Spark's core concepts, applications, and the use of Spark to implement a microservice. To learn about the process of integrating Kafka and Storm, two approaches to Spark and Kafka integration will be discussed. This book will assist a software engineer to transition to a Big Data engineer and Big Data architect by providing knowledge of big data processing and the architectures of Kafka, Storm, and Spark Streaming. WHAT YOU WILL LEARN ● Creation of Kafka producers, consumers, and brokers using command line. ● End-to-end implementation of Kafka messaging system with Java in Eclipse. ● Perform installation and creation of a Storm Cluster and execute Storm Management commands. ● Implement Spouts, Bolts and a Topology in Storm for Transaction alert application system. ● Perform the implementation of a microservice using Spark in Scala IDE. ● Learn about the various approaches of integrating Kafka and Spark. ● Perform integration of Kafka and Storm using Java in the Eclipse IDE. WHO THIS BOOK IS FOR This book is intended for Software Developers, Data Scientists, and Big Data Architects who want to build software systems to process data streams in real time. To understand the concepts in this book, knowledge of any programming language such as Java, Python, etc. is needed. TABLE OF CONTENTS 1. Introduction to Kafka 2. Installing Kafka 3. Kafka Messaging 4. Kafka Producers 5. Kafka Consumers 6. Introduction to Storm 7. Installation and Configuration 8. Spouts and Bolts 9. Introduction to Spark 10. Spark Streaming 11. Kafka Integration with Storm 12. Kafka Integration with Spark

Hadoop MapReduce v2 Cookbook - Second Edition

Hadoop MapReduce v2 Cookbook - Second Edition
Author: Thilina Gunarathne
Publisher: Packt Publishing Ltd
Total Pages: 322
Release: 2015-02-25
Genre: Computers
ISBN: 1783285486

If you are a Big Data enthusiast and wish to use Hadoop v2 to solve your problems, then this book is for you. This book is for Java programmers with little to moderate knowledge of Hadoop MapReduce. This is also a one-stop reference for developers and system admins who want to quickly get up to speed with using Hadoop v2. It would be helpful to have a basic knowledge of software development using Java and a basic working knowledge of Linux.

Recent Developments in Intelligent Computing, Communication and Devices

Recent Developments in Intelligent Computing, Communication and Devices
Author: Srikanta Patnaik
Publisher: Springer
Total Pages: 1216
Release: 2018-08-22
Genre: Technology & Engineering
ISBN: 9811089442

This book offers a collection of high-quality, peer-reviewed research papers presented at the International Conference on Intelligent Computing, Communication and Devices (ICCD 2017), discussing all dimensions of intelligent sciences – intelligent computing, intelligent communication, and intelligent devices. Intelligent computing addresses areas such as intelligent and distributed computing, intelligent grid and cloud computing, internet of things, soft computing and engineering applications, data mining and knowledge discovery, semantic and web technology, hybrid systems, agent computing, bioinformatics, and recommendation systems. Intelligent communication is concerned with communication and network technologies, such as mobile broadband and all optical networks that are the key to groundbreaking inventions of intelligent communication technologies. It includes communication hardware, software and networked intelligence, mobile technologies, machine-to-machine communication networks, speech and natural language processing, routing techniques and network analytics, wireless ad hoc and sensor networks, communications and information security, signal, image and video processing, network management, and traffic engineering. Lastly, intelligent devices are any equipment, instruments, or machines that have their own computing capability. As computing technology becomes more advanced and less expensive, it can be incorporated an increasing number of devices of all kinds. This area covers such as embedded systems, radiofrequency identification (RFID), radiofrequency microelectromechanical system (RF MEMS), very-large-scale integration (VLSI) design and electronic devices, analog and mixed-signal integrated circuit (IC) design and testing, microelectromechanical system (MEMS) and microsystems, solar cells and photonics, nanodevices, single electron and spintronics devices, space electronics, and intelligent robotics.