Stochastic Processes and Models in Operations Research

Stochastic Processes and Models in Operations Research
Author: Anbazhagan, Neelamegam
Publisher: IGI Global
Total Pages: 359
Release: 2016-03-24
Genre: Business & Economics
ISBN: 1522500456

Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models
Author: David Insua
Publisher: John Wiley & Sons
Total Pages: 315
Release: 2012-04-02
Genre: Mathematics
ISBN: 1118304039

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Stochastic Models in Operations Research: Stochastic optimization

Stochastic Models in Operations Research: Stochastic optimization
Author: Daniel P. Heyman
Publisher: Courier Corporation
Total Pages: 580
Release: 2004-01-01
Genre: Mathematics
ISBN: 9780486432601

This two-volume set of texts explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. They demonstrate the interdependence of three areas of study that usually receive separate treatments: stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, they emphasize the practical importance, intellectual stimulation, and mathematical elegance of stochastic models and are intended primarily as graduate-level texts.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
Total Pages: 410
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483269272

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Operations Research: Introduction To Models And Methods

Operations Research: Introduction To Models And Methods
Author: Richard Johannes Boucherie
Publisher: World Scientific
Total Pages: 512
Release: 2021-10-26
Genre: Mathematics
ISBN: 9811239363

This attractive textbook with its easy-to-follow presentation provides a down-to-earth introduction to operations research for students in a wide range of fields such as engineering, business analytics, mathematics and statistics, computer science, and econometrics. It is the result of many years of teaching and collective feedback from students.The book covers the basic models in both deterministic and stochastic operations research and is a springboard to more specialized texts, either practical or theoretical. The emphasis is on useful models and interpreting the solutions in the context of concrete applications.The text is divided into several parts. The first three chapters deal exclusively with deterministic models, including linear programming with sensitivity analysis, integer programming and heuristics, and network analysis. The next three chapters primarily cover basic stochastic models and techniques, including decision trees, dynamic programming, optimal stopping, production planning, and inventory control. The final five chapters contain more advanced material, such as discrete-time and continuous-time Markov chains, Markov decision processes, queueing models, and discrete-event simulation.Each chapter contains numerous exercises, and a large selection of exercises includes solutions.

Stochastic Models in Operations Research

Stochastic Models in Operations Research
Author: Daniel P. Heyman
Publisher: Courier Corporation
Total Pages: 564
Release: 2004-01-01
Genre: Mathematics
ISBN: 9780486432595

This volume of a 2-volume set explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. Explores stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, this graduate-level text emphasizes the practical importance, intellectual stimulation, and mathematical elegance of stochastic models.

Constructive Computation in Stochastic Models with Applications

Constructive Computation in Stochastic Models with Applications
Author: Quan-Lin Li
Publisher: Springer Science & Business Media
Total Pages: 693
Release: 2011-02-02
Genre: Mathematics
ISBN: 364211492X

"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.

Modeling with Stochastic Programming

Modeling with Stochastic Programming
Author: Alan J. King
Publisher: Springer Science & Business Media
Total Pages: 189
Release: 2012-06-19
Genre: Mathematics
ISBN: 0387878173

While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.

Stochastic Optimization Methods

Stochastic Optimization Methods
Author: Kurt Marti
Publisher: Springer
Total Pages: 389
Release: 2015-02-21
Genre: Business & Economics
ISBN: 3662462141

This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.