Stochastic Processes And Functional Analysis
Download Stochastic Processes And Functional Analysis full books in PDF, epub, and Kindle. Read online free Stochastic Processes And Functional Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Adam Bobrowski |
Publisher | : Cambridge University Press |
Total Pages | : 416 |
Release | : 2005-08-11 |
Genre | : Mathematics |
ISBN | : 9780521831666 |
This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.
Author | : Alan C. Krinik |
Publisher | : CRC Press |
Total Pages | : 526 |
Release | : 2004-03-23 |
Genre | : Mathematics |
ISBN | : 9780203913574 |
This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas
Author | : Pierre Brémaud |
Publisher | : Springer |
Total Pages | : 396 |
Release | : 2014-09-16 |
Genre | : Mathematics |
ISBN | : 3319095900 |
This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). Each chapter has an exercise section, which makes Fourier Analysis and Stochastic Processes suitable for a graduate course in applied mathematics, as well as for self-study.
Author | : Jianhai Bao |
Publisher | : Springer |
Total Pages | : 159 |
Release | : 2016-11-19 |
Genre | : Mathematics |
ISBN | : 3319469797 |
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Author | : Zhi-yuan Huang |
Publisher | : Springer Science & Business Media |
Total Pages | : 308 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401141088 |
The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).
Author | : Grigorios A. Pavliotis |
Publisher | : Springer |
Total Pages | : 345 |
Release | : 2014-11-19 |
Genre | : Mathematics |
ISBN | : 1493913239 |
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Author | : Paul H. Bezandry |
Publisher | : Springer Science & Business Media |
Total Pages | : 247 |
Release | : 2011-04-07 |
Genre | : Mathematics |
ISBN | : 1441994769 |
This book lays the foundations for a theory on almost periodic stochastic processes and their applications to various stochastic differential equations, functional differential equations with delay, partial differential equations, and difference equations. It is in part a sequel of authors recent work on almost periodic stochastic difference and differential equations and has the particularity to be the first book that is entirely devoted to almost periodic random processes and their applications. The topics treated in it range from existence, uniqueness, and stability of solutions for abstract stochastic difference and differential equations.
Author | : Shigeo Kusuoka |
Publisher | : Springer Nature |
Total Pages | : 225 |
Release | : 2020-10-20 |
Genre | : Mathematics |
ISBN | : 9811588643 |
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Author | : Ali S. Üstünel |
Publisher | : Springer |
Total Pages | : 103 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540446621 |
This book gives the basis of the probabilistic functional analysis on Wiener space, developed during the last decade. The subject has progressed considerably in recent years thr- ough its links with QFT and the impact of Stochastic Calcu- lus of Variations of P. Malliavin. Although the latter deals essentially with the regularity of the laws of random varia- bles defined on the Wiener space, the book focuses on quite different subjects, i.e. independence, Ramer's theorem, etc. First year graduate level in functional analysis and theory of stochastic processes is required (stochastic integration with respect to Brownian motion, Ito formula etc). It can be taught as a 1-semester course as it is, or in 2 semesters adding preliminaries from the theory of stochastic processes It is a user-friendly introduction to Malliavin calculus!
Author | : James L. Melsa |
Publisher | : Courier Corporation |
Total Pages | : 420 |
Release | : 2013-01-01 |
Genre | : Mathematics |
ISBN | : 0486490998 |
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.