Stochastic Optimal Control and the U.S. Financial Debt Crisis

Stochastic Optimal Control and the U.S. Financial Debt Crisis
Author: Jerome L. Stein
Publisher: Springer Science & Business Media
Total Pages: 167
Release: 2012-03-30
Genre: Business & Economics
ISBN: 1461430798

Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process under uncertainty—has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management. Stochastic Optimal Control and the U.S. Financial Debt Crisis analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management.

Continuous-time Stochastic Control and Optimization with Financial Applications

Continuous-time Stochastic Control and Optimization with Financial Applications
Author: Huyên Pham
Publisher: Springer Science & Business Media
Total Pages: 243
Release: 2009-05-28
Genre: Mathematics
ISBN: 3540895000

Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Applications of Stochastic Optimal Control to Economics and Finance

Applications of Stochastic Optimal Control to Economics and Finance
Author: Salvatore Federico
Publisher:
Total Pages: 206
Release: 2020-06-23
Genre:
ISBN: 9783039360581

In a world dominated by uncertainty, modeling and understanding the optimal behavior of agents is of the utmost importance. Many problems in economics, finance, and actuarial science naturally require decision makers to undertake choices in stochastic environments. Examples include optimal individual consumption and retirement choices, optimal management of portfolios and risk, hedging, optimal timing issues in pricing American options, and investment decisions. Stochastic control theory provides the methods and results to tackle all such problems. This book is a collection of the papers published in the Special Issue "Applications of Stochastic Optimal Control to Economics and Finance", which appeared in the open access journal Risks in 2019. It contains seven peer-reviewed papers dealing with stochastic control models motivated by important questions in economics and finance. Each model is rigorously mathematically funded and treated, and the numerical methods are employed to derive the optimal solution. The topics of the book's chapters range from optimal public debt management to optimal reinsurance, real options in energy markets, and optimal portfolio choice in partial and complete information settings. From a mathematical point of view, techniques and arguments of dynamic programming theory, filtering theory, optimal stopping, one-dimensional diffusions and multi-dimensional jump processes are used.

Stochastic Controls

Stochastic Controls
Author: Jiongmin Yong
Publisher: Springer Science & Business Media
Total Pages: 459
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461214661

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE
Author: Nizar Touzi
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2012-09-25
Genre: Mathematics
ISBN: 1461442869

This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension
Author: Giorgio Fabbri
Publisher: Springer
Total Pages: 928
Release: 2017-06-22
Genre: Mathematics
ISBN: 3319530674

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott

Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott
Author: Samuel N Cohen
Publisher: World Scientific
Total Pages: 605
Release: 2012-08-10
Genre: Mathematics
ISBN: 9814483915

This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.

Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance
Author: William T. Ziemba
Publisher: World Scientific
Total Pages: 756
Release: 2006
Genre: Business & Economics
ISBN: 981256800X

A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications
Author: Rene Carmona
Publisher: SIAM
Total Pages: 263
Release: 2016-02-18
Genre: Mathematics
ISBN: 1611974240

The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions
Author: Jingrui Sun
Publisher: Springer Nature
Total Pages: 129
Release: 2020-06-29
Genre: Mathematics
ISBN: 3030209229

This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents the results in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, it precisely identifies, for the first time, the interconnections between three well-known, relevant issues – the existence of optimal controls, solvability of the optimality system, and solvability of the associated Riccati equation. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.