Stochastic Models In Operations Research
Download Stochastic Models In Operations Research full books in PDF, epub, and Kindle. Read online free Stochastic Models In Operations Research ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anbazhagan, Neelamegam |
Publisher | : IGI Global |
Total Pages | : 359 |
Release | : 2016-03-24 |
Genre | : Business & Economics |
ISBN | : 1522500456 |
Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.
Author | : Daniel P. Heyman |
Publisher | : Courier Corporation |
Total Pages | : 580 |
Release | : 2004-01-01 |
Genre | : Mathematics |
ISBN | : 9780486432601 |
This two-volume set of texts explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. They demonstrate the interdependence of three areas of study that usually receive separate treatments: stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, they emphasize the practical importance, intellectual stimulation, and mathematical elegance of stochastic models and are intended primarily as graduate-level texts.
Author | : Tadashi Dohi |
Publisher | : World Scientific |
Total Pages | : 325 |
Release | : 2007 |
Genre | : Business & Economics |
ISBN | : 9812706682 |
Operations research uses quantitative models to analyze and predict the behavior of systems and to provide information for decision makers. Two key concepts in operations research are optimization and uncertainty. This volume consists of a collection of peer reviewed papers from the International Workshop on Recent Advances in Stochastic Operations Research (RASOR 2005), August 25OCo26, 2005, Canmore, Alberta, Canada. In particular, the book focusses on models in stochastic operations research, including queueing models, inventory models, financial engineering models, reliability models, and simulations models."
Author | : Quan-Lin Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 693 |
Release | : 2011-02-02 |
Genre | : Mathematics |
ISBN | : 364211492X |
"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.
Author | : Richard Johannes Boucherie |
Publisher | : World Scientific |
Total Pages | : 512 |
Release | : 2021-10-26 |
Genre | : Mathematics |
ISBN | : 9811239363 |
This attractive textbook with its easy-to-follow presentation provides a down-to-earth introduction to operations research for students in a wide range of fields such as engineering, business analytics, mathematics and statistics, computer science, and econometrics. It is the result of many years of teaching and collective feedback from students.The book covers the basic models in both deterministic and stochastic operations research and is a springboard to more specialized texts, either practical or theoretical. The emphasis is on useful models and interpreting the solutions in the context of concrete applications.The text is divided into several parts. The first three chapters deal exclusively with deterministic models, including linear programming with sensitivity analysis, integer programming and heuristics, and network analysis. The next three chapters primarily cover basic stochastic models and techniques, including decision trees, dynamic programming, optimal stopping, production planning, and inventory control. The final five chapters contain more advanced material, such as discrete-time and continuous-time Markov chains, Markov decision processes, queueing models, and discrete-event simulation.Each chapter contains numerous exercises, and a large selection of exercises includes solutions.
Author | : Alan J. King |
Publisher | : Springer Science & Business Media |
Total Pages | : 189 |
Release | : 2012-06-19 |
Genre | : Mathematics |
ISBN | : 0387878173 |
While there are several texts on how to solve and analyze stochastic programs, this is the first text to address basic questions about how to model uncertainty, and how to reformulate a deterministic model so that it can be analyzed in a stochastic setting. This text would be suitable as a stand-alone or supplement for a second course in OR/MS or in optimization-oriented engineering disciplines where the instructor wants to explain where models come from and what the fundamental issues are. The book is easy-to-read, highly illustrated with lots of examples and discussions. It will be suitable for graduate students and researchers working in operations research, mathematics, engineering and related departments where there is interest in learning how to model uncertainty. Alan King is a Research Staff Member at IBM's Thomas J. Watson Research Center in New York. Stein W. Wallace is a Professor of Operational Research at Lancaster University Management School in England.
Author | : Daniel P. Heyman |
Publisher | : Courier Corporation |
Total Pages | : 564 |
Release | : 2004-01-01 |
Genre | : Mathematics |
ISBN | : 9780486432595 |
This volume of a 2-volume set explores the central facts and ideas of stochastic processes, illustrating their use in models based on applied and theoretical investigations. Explores stochastic processes, operating characteristics of stochastic systems, and stochastic optimization. Comprehensive in its scope, this graduate-level text emphasizes the practical importance, intellectual stimulation, and mathematical elegance of stochastic models.
Author | : Willem K. Klein Haneveld |
Publisher | : Springer Nature |
Total Pages | : 255 |
Release | : 2019-10-24 |
Genre | : Business & Economics |
ISBN | : 3030292193 |
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
Author | : C. Richard Cassady |
Publisher | : CRC Press |
Total Pages | : 224 |
Release | : 2008-08-05 |
Genre | : Business & Economics |
ISBN | : 1420054902 |
Industrial engineering has expanded from its origins in manufacturing to transportation, health care, logistics, services, and more. A common denominator among all these industries, and one of the biggest challenges facing decision-makers, is the unpredictability of systems. Probability Models in Operations Research provides a comprehensive
Author | : Shunji Osaki |
Publisher | : Springer Science & Business Media |
Total Pages | : 338 |
Release | : 2012-11-02 |
Genre | : Mathematics |
ISBN | : 3540248080 |
Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.