Stochastic Modeling And Mathematical Statistics
Download Stochastic Modeling And Mathematical Statistics full books in PDF, epub, and Kindle. Read online free Stochastic Modeling And Mathematical Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Francisco J. Samaniego |
Publisher | : CRC Press |
Total Pages | : 622 |
Release | : 2014-01-14 |
Genre | : Mathematics |
ISBN | : 1466560479 |
Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well
Author | : Nicolas Lanchier |
Publisher | : Springer |
Total Pages | : 305 |
Release | : 2017-01-27 |
Genre | : Mathematics |
ISBN | : 3319500384 |
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.
Author | : Barry L. Nelson |
Publisher | : Courier Corporation |
Total Pages | : 338 |
Release | : 2012-10-11 |
Genre | : Mathematics |
ISBN | : 0486139948 |
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Author | : M. M. Rao |
Publisher | : Courier Corporation |
Total Pages | : 322 |
Release | : 2011-01-01 |
Genre | : Mathematics |
ISBN | : 0486481220 |
Stochastic analysis involves the study of a process involving a randomly determined sequence of observations, each of which represents a sample of one element of probability distribution. This volume considers fundamental theories and contrasts the natural interplay between real and abstract methods. Starting with the introduction of the basic Kolmogorov-Bochner existence theorem, the text explores conditional expectations and probabilities as well as projective and direct limits. Subsequent chapters examine several aspects of discrete martingale theory, including applications to ergodic theory, likelihood ratios, and the Gaussian dichotomy theorem. Prerequisites include a standard measure theory course. No prior knowledge of probability is assumed; therefore, most of the results are proved in detail. Each chapter concludes with a problem section that features many hints and facts, including the most important results in information theory.
Author | : Ansgar Steland |
Publisher | : Springer |
Total Pages | : 479 |
Release | : 2015-02-04 |
Genre | : Mathematics |
ISBN | : 3319138812 |
This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.
Author | : Darren J. Wilkinson |
Publisher | : CRC Press |
Total Pages | : 366 |
Release | : 2018-12-07 |
Genre | : Mathematics |
ISBN | : 1351000896 |
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Author | : Howard M. Taylor |
Publisher | : Academic Press |
Total Pages | : 410 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Author | : G. Latouche |
Publisher | : SIAM |
Total Pages | : 331 |
Release | : 1999-01-01 |
Genre | : Mathematics |
ISBN | : 0898714257 |
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Author | : E. J. McShane |
Publisher | : Academic Press |
Total Pages | : 252 |
Release | : 2014-07-10 |
Genre | : Mathematics |
ISBN | : 1483218775 |
Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Stochastic Calculus and Stochastic Models focuses on the properties, functions, and applications of stochastic integrals. The publication first ponders on stochastic integrals, existence of stochastic integrals, and continuity, chain rule, and substitution. Discussions focus on differentiation of a composite function, continuity of sample functions, existence and vanishing of stochastic integrals, canonical form, elementary properties of integrals, and the Itô-belated integral. The book then examines stochastic differential equations, including existence of solutions of stochastic differential equations, linear differential equations and their adjoints, approximation lemma, and the Cauchy-Maruyama approximation. The manuscript takes a look at equations in canonical form, as well as justification of the canonical extension in stochastic modeling; rate of convergence of approximations to solutions; comparison of ordinary and stochastic differential equations; and invariance under change of coordinates. The publication is a dependable reference for mathematicians and researchers interested in stochastic integrals.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.