Stochastic Differential Systems Stochastic Control Theory And Applications
Download Stochastic Differential Systems Stochastic Control Theory And Applications full books in PDF, epub, and Kindle. Read online free Stochastic Differential Systems Stochastic Control Theory And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Rene Carmona |
Publisher | : SIAM |
Total Pages | : 263 |
Release | : 2016-02-18 |
Genre | : Mathematics |
ISBN | : 1611974240 |
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
Author | : Peter H. Baxendale |
Publisher | : World Scientific |
Total Pages | : 416 |
Release | : 2007 |
Genre | : Science |
ISBN | : 9812706623 |
The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
Author | : Jiongmin Yong |
Publisher | : Springer Science & Business Media |
Total Pages | : 459 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461214661 |
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.
Author | : Avner Friedman |
Publisher | : Academic Press |
Total Pages | : 248 |
Release | : 2014-06-20 |
Genre | : Mathematics |
ISBN | : 1483217876 |
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.
Author | : Jin Ma |
Publisher | : Springer |
Total Pages | : 285 |
Release | : 2007-04-24 |
Genre | : Mathematics |
ISBN | : 3540488316 |
This volume is a survey/monograph on the recently developed theory of forward-backward stochastic differential equations (FBSDEs). Basic techniques such as the method of optimal control, the 'Four Step Scheme', and the method of continuation are presented in full. Related topics such as backward stochastic PDEs and many applications of FBSDEs are also discussed in detail. The volume is suitable for readers with basic knowledge of stochastic differential equations, and some exposure to the stochastic control theory and PDEs. It can be used for researchers and/or senior graduate students in the areas of probability, control theory, mathematical finance, and other related fields.
Author | : Wendell H. Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461263808 |
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Author | : Michał Kisielewicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 295 |
Release | : 2013-06-12 |
Genre | : Mathematics |
ISBN | : 146146756X |
This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.
Author | : Wendell Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 601 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461387620 |
This IMA Volume in Mathematics and its Applications STOCHASTIC DIFFERENTIAL SYSTEMS, STOCHASTIC CONTROL THEORY AND APPLICATIONS is the proceedings of a workshop which was an integral part of the 1986-87 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS. We are grateful to the Scientific Committee: Daniel Stroock (Chairman) WendeIl Flerning Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We es pecially thank WendeIl Fleming and Pierre-Louis Lions for organizing an interesting and productive workshop in an area in which mathematics is beginning to make significant contributions to real-world problems. George R. Seil Hans Weinberger PREFACE This volume is the Proceedings of a Workshop on Stochastic Differential Systems, Stochastic Control Theory, and Applications held at IMA June 9-19,1986. The Workshop Program Commit tee consisted of W.H. Fleming and P.-L. Lions (co-chairmen), J. Baras, B. Hajek, J.M. Harrison, and H. Sussmann. The Workshop emphasized topics in the following four areas. (1) Mathematical theory of stochastic differential systems, stochastic control and nonlinear filtering for Markov diffusion processes. Connections with partial differential equations. (2) Applications of stochastic differential system theory, in engineering and management sci ence. Adaptive control of Markov processes. Advanced computational methods in stochas tic control and nonlinear filtering. (3) Stochastic scheduling, queueing networks, and related topics. Flow control, multiarm bandit problems, applications to problems of computer networks and scheduling of complex manufacturing operations.
Author | : Boris L. Rozovsky |
Publisher | : Springer |
Total Pages | : 340 |
Release | : 2018-10-03 |
Genre | : Mathematics |
ISBN | : 3319948938 |
This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations. The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems. This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.
Author | : Huyên Pham |
Publisher | : Springer Science & Business Media |
Total Pages | : 243 |
Release | : 2009-05-28 |
Genre | : Mathematics |
ISBN | : 3540895000 |
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.