Stochastic Differential And Difference Equations
Download Stochastic Differential And Difference Equations full books in PDF, epub, and Kindle. Read online free Stochastic Differential And Difference Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bernt Oksendal |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662130505 |
These notes are based on a postgraduate course I gave on stochastic differential equations at Edinburgh University in the spring 1982. No previous knowledge about the subject was assumed, but the presen tation is based on some background in measure theory. There are several reasons why one should learn more about stochastic differential equations: They have a wide range of applica tions outside mathematics, there are many fruitful connections to other mathematical disciplines and the subject has a rapidly develop ing life of its own as a fascinating research field with many interesting unanswered questions. Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and complete ness that is scares many nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of view: Not knowing anything (except rumours, maybe) about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields? I would not be so interested in the proof of the most general case, but rather in an easier proof of a special case, which may give just as much of the basic idea in the argument. And I would be willing to believe some basic results without proof (at first stage, anyway) in order to have time for some more basic applications.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Avner Friedman |
Publisher | : Academic Press |
Total Pages | : 248 |
Release | : 2014-06-20 |
Genre | : Mathematics |
ISBN | : 1483217876 |
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.
Author | : Peter E. Kloeden |
Publisher | : Springer Science & Business Media |
Total Pages | : 666 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662126168 |
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Author | : Lawrence C. Evans |
Publisher | : American Mathematical Soc. |
Total Pages | : 161 |
Release | : 2012-12-11 |
Genre | : Mathematics |
ISBN | : 1470410540 |
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Author | : Leszek Gawarecki |
Publisher | : Springer Science & Business Media |
Total Pages | : 300 |
Release | : 2010-11-29 |
Genre | : Mathematics |
ISBN | : 3642161944 |
The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, professionals working with mathematical models of finance. Major methods include compactness, coercivity, monotonicity, in a variety of set-ups. The authors emphasize the fundamental work of Gikhman and Skorokhod on the existence and uniqueness of solutions to stochastic differential equations and present its extension to infinite dimension. They also generalize the work of Khasminskii on stability and stationary distributions of solutions. New results, applications, and examples of stochastic partial differential equations are included. This clear and detailed presentation gives the basics of the infinite dimensional version of the classic books of Gikhman and Skorokhod and of Khasminskii in one concise volume that covers the main topics in infinite dimensional stochastic PDE’s. By appropriate selection of material, the volume can be adapted for a 1- or 2-semester course, and can prepare the reader for research in this rapidly expanding area.
Author | : Sigrun Bodine |
Publisher | : Springer |
Total Pages | : 411 |
Release | : 2015-05-26 |
Genre | : Mathematics |
ISBN | : 331918248X |
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers in asymptotic integration as well to non-experts who are interested in the asymptotic analysis of linear differential and difference equations. It will additionally be of interest to students in mathematics, applied sciences, and engineering. Linear algebra and some basic concepts from advanced calculus are prerequisites.
Author | : Imre Csiszar |
Publisher | : Springer Science & Business Media |
Total Pages | : 358 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461219809 |
Author | : Peter H. Baxendale |
Publisher | : World Scientific |
Total Pages | : 416 |
Release | : 2007 |
Genre | : Science |
ISBN | : 9812706623 |
The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
Author | : Elias T. Krainski |
Publisher | : CRC Press |
Total Pages | : 284 |
Release | : 2018-12-07 |
Genre | : Mathematics |
ISBN | : 0429629850 |
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.