Stochastic Algorithms Foundations And Applications
Download Stochastic Algorithms Foundations And Applications full books in PDF, epub, and Kindle. Read online free Stochastic Algorithms Foundations And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Juraj Hromkovič |
Publisher | : Springer Science & Business Media |
Total Pages | : 174 |
Release | : 2007-09-06 |
Genre | : Computers |
ISBN | : 3540748709 |
This book constitutes the refereed proceedings of the 4th International Symposium on Stochastic Algorithms: Foundations and Applications, SAGA 2007. The nine revised full papers and five invited papers presented were carefully selected for inclusion in the book. The contributed papers included in this volume cover both theoretical as well as applied aspects of stochastic computations with a special focus on investigating the power of randomization in algorithmics.
Author | : O. B. Lupanov |
Publisher | : Springer Science & Business Media |
Total Pages | : 247 |
Release | : 2005-10-13 |
Genre | : Computers |
ISBN | : 3540294988 |
This book constitutes the refereed proceedings of the Third International Symposium on Stochastic Algorithms: Foundations and Applications, SAGA 2005, held in Moscow, Russia in October 2005. The 14 revised full papers presented together with 5 invited papers were carefully reviewed and selected for inclusion in the book. The contributed papers included in this volume cover both theoretical as well as applied aspects of stochastic computations whith a special focus on new algorithmic ideas involving stochastic decisions and the design and evaluation of stochastic algorithms within realistic scenarios.
Author | : Osamu Watanabe |
Publisher | : Springer |
Total Pages | : 230 |
Release | : 2009-09-30 |
Genre | : Computers |
ISBN | : 3642049443 |
This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on learning, graphs, testing, optimization and caching, as well as stochastic algorithms in bioinformatics.
Author | : Hertfordshire SAGA 2003 (2003 : Hatfield, England) |
Publisher | : Springer Science & Business Media |
Total Pages | : 176 |
Release | : 2003-09-16 |
Genre | : Computers |
ISBN | : 3540201033 |
This book constitutes the refereed proceedings of the Second International Symposium on Stochastic Algorithms: Foundations and Applications, SAGA 2003, held in Hatfield, UK in September 2003. The 12 revised full papers presented together with three invited papers were carefully reviewed and selected for inclusion in the book. Among the topics addressed are ant colony optimization, randomized algorithms for the intersection problem, local search for constraint satisfaction problems, randomized local search and combinatorial optimization, simulated annealing, probabilistic global search, network communication complexity, open shop scheduling, aircraft routing, traffic control, randomized straight-line programs, and stochastic automata and probabilistic transformations.
Author | : Holger H. Hoos |
Publisher | : Morgan Kaufmann |
Total Pages | : 678 |
Release | : 2005 |
Genre | : Business & Economics |
ISBN | : 1558608729 |
Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.
Author | : Jon H. Davis |
Publisher | : Springer Science & Business Media |
Total Pages | : 434 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461200717 |
"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
Author | : Jeremy Watt |
Publisher | : Cambridge University Press |
Total Pages | : 597 |
Release | : 2020-01-09 |
Genre | : Computers |
ISBN | : 1108480721 |
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Author | : Albert Benveniste |
Publisher | : Springer Science & Business Media |
Total Pages | : 373 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642758940 |
Adaptive systems are widely encountered in many applications ranging through adaptive filtering and more generally adaptive signal processing, systems identification and adaptive control, to pattern recognition and machine intelligence: adaptation is now recognised as keystone of "intelligence" within computerised systems. These diverse areas echo the classes of models which conveniently describe each corresponding system. Thus although there can hardly be a "general theory of adaptive systems" encompassing both the modelling task and the design of the adaptation procedure, nevertheless, these diverse issues have a major common component: namely the use of adaptive algorithms, also known as stochastic approximations in the mathematical statistics literature, that is to say the adaptation procedure (once all modelling problems have been resolved). The juxtaposition of these two expressions in the title reflects the ambition of the authors to produce a reference work, both for engineers who use these adaptive algorithms and for probabilists or statisticians who would like to study stochastic approximations in terms of problems arising from real applications. Hence the book is organised in two parts, the first one user-oriented, and the second providing the mathematical foundations to support the practice described in the first part. The book covers the topcis of convergence, convergence rate, permanent adaptation and tracking, change detection, and is illustrated by various realistic applications originating from these areas of applications.
Author | : Gade Pandu Rangaiah |
Publisher | : World Scientific |
Total Pages | : 722 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 9814299219 |
Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller
Author | : Ramaprasad Bhar |
Publisher | : World Scientific |
Total Pages | : 354 |
Release | : 2010 |
Genre | : Business & Economics |
ISBN | : 9814304859 |
This book provides a comprehensive account of stochastic filtering as a modeling tool in finance and economics. It aims to present this very important tool with a view to making it more popular among researchers in the disciplines of finance and economics. It is not intended to give a complete mathematical treatment of different stochastic filtering approaches, but rather to describe them in simple terms and illustrate their application with real historical data for problems normally encountered in these disciplines. Beyond laying out the steps to be implemented, the steps are demonstrated in the context of different market segments. Although no prior knowledge in this area is required, the reader is expected to have knowledge of probability theory as well as a general mathematical aptitude. Its simple presentation of complex algorithms required to solve modeling problems in increasingly sophisticated financial markets makes this book particularly valuable as a reference for graduate students and researchers interested in the field. Furthermore, it analyses the model estimation results in the context of the market and contrasts these with contemporary research publications. It is also suitable for use as a text for graduate level courses on stochastic modeling.