Statistics For Environmental Science And Management
Download Statistics For Environmental Science And Management full books in PDF, epub, and Kindle. Read online free Statistics For Environmental Science And Management ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bryan F.J. Manly |
Publisher | : CRC Press |
Total Pages | : 312 |
Release | : 2008-10-21 |
Genre | : Mathematics |
ISBN | : 1439878129 |
Presenting a nonmathematical approach to this topic, Statistics for Environmental Science and Management introduces frequently used statistical methods and practical applications for the environmental field. This second edition features updated references and examples along with new and expanded material on data quality objectives, the generalized linear model, spatial data analysis, and Monte Carlo risk assessment. Additional topics covered include environmental monitoring, impact assessment, censored data, environmental sampling, the role of statistics in environmental science, assessing site reclamation, and drawing conclusions from data.
Author | : Abbas F. M. Al-Karkhi |
Publisher | : Elsevier |
Total Pages | : 242 |
Release | : 2019-09-13 |
Genre | : Science |
ISBN | : 0128186232 |
Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures
Author | : Clemens Reimann |
Publisher | : John Wiley & Sons |
Total Pages | : 380 |
Release | : 2011-08-31 |
Genre | : Science |
ISBN | : 1119965284 |
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Author | : Linfield C. Brown |
Publisher | : CRC Press |
Total Pages | : 584 |
Release | : 2002-01-29 |
Genre | : Mathematics |
ISBN | : 9781420056631 |
Two critical questions arise when one is confronted with a new problem that involves the collection and analysis of data. How will the use of statistics help solve this problem? Which techniques should be used? Statistics for Environmental Engineers, Second Edition helps environmental science and engineering students answer these questions when the goal is to understand and design systems for environmental protection. The second edition of this bestseller is a solutions-oriented text that encourages students to view statistics as a problem-solving tool. Written in an easy-to-understand style, Statistics for Environmental Engineers, Second Edition consists of 54 short, "stand-alone" chapters. All chapters address a particular environmental problem or statistical technique and are written in a manner that permits each chapter to be studied independently and in any order. Chapters are organized around specific case studies, beginning with brief discussions of the appropriate methodologies, followed by analysis of the case study examples, and ending with comments on the strengths and weaknesses of the approaches. New to this edition: Thirteen new chapters dealing with topics such as experimental design, sizing experiments, tolerance and prediction intervals, time-series modeling and forecasting, transfer function models, weighted least squares, laboratory quality assurance, and specialized control charts Exercises for classroom use or self-study in each chapter Improved graphics Revisions to all chapters Whether the topic is displaying data, t-tests, mechanistic model building, nonlinear least squares, confidence intervals, regression, or experimental design, the context is always familiar to environmental scientists and engineers. Case studies are drawn from censored data, detection limits, regulatory standards, treatment plant performance, sampling and measurement errors, hazardous waste, and much more. This revision of a classic text serves as an ideal textbook for students and a valuable reference for any environmental professional working with numbers.
Author | : Penny A. Cook |
Publisher | : Routledge |
Total Pages | : 218 |
Release | : 2005-08-10 |
Genre | : Science |
ISBN | : 113463885X |
Using Statistics to Understand the Environment covers all the basic tests required for environmental practicals and projects and points the way to the more advanced techniques that may be needed in more complex research designs. Following an introduction to project design, the book covers methods to describe data, to examine differences between samples, and to identify relationships and associations between variables. Featuring: worked examples covering a wide range of environmental topics, drawings and icons, chapter summaries, a glossary of statistical terms and a further reading section, this book focuses on the needs of the researcher rather than on the mathematics behind the tests.
Author | : John H. Schuenemeyer |
Publisher | : John Wiley & Sons |
Total Pages | : 341 |
Release | : 2011-04-12 |
Genre | : Mathematics |
ISBN | : 1118102215 |
A comprehensive treatment of statistical applications for solving real-world environmental problems A host of complex problems face today's earth science community, such as evaluating the supply of remaining non-renewable energy resources, assessing the impact of people on the environment, understanding climate change, and managing the use of water. Proper collection and analysis of data using statistical techniques contributes significantly toward the solution of these problems. Statistics for Earth and Environmental Scientists presents important statistical concepts through data analytic tools and shows readers how to apply them to real-world problems. The authors present several different statistical approaches to the environmental sciences, including Bayesian and nonparametric methodologies. The book begins with an introduction to types of data, evaluation of data, modeling and estimation, random variation, and sampling—all of which are explored through case studies that use real data from earth science applications. Subsequent chapters focus on principles of modeling and the key methods and techniques for analyzing scientific data, including: Interval estimation and Methods for analyzinghypothesis testing of means time series data Spatial statistics Multivariate analysis Discrete distributions Experimental design Most statistical models are introduced by concept and application, given as equations, and then accompanied by heuristic justification rather than a formal proof. Data analysis, model building, and statistical inference are stressed throughout, and readers are encouraged to collect their own data to incorporate into the exercises at the end of each chapter. Most data sets, graphs, and analyses are computed using R, but can be worked with using any statistical computing software. A related website features additional data sets, answers to selected exercises, and R code for the book's examples. Statistics for Earth and Environmental Scientists is an excellent book for courses on quantitative methods in geology, geography, natural resources, and environmental sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for earth scientists, geologists, hydrologists, and environmental statisticians who collect and analyze data in their everyday work.
Author | : Bryan F.J. Manly |
Publisher | : CRC Press |
Total Pages | : 312 |
Release | : 2008-10-21 |
Genre | : Mathematics |
ISBN | : 1420061488 |
Revised, expanded, and updated, this second edition of Statistics for Environmental Science and Management is that rare animal, a resource that works well as a text for graduate courses and a reference for appropriate statistical approaches to specific environmental problems. It is uncommon to find so many important environmental topics covered in one book. Its strength is author Bryan Manly’s ability to take a non-mathematical approach while keeping essential mathematical concepts intact. He clearly explains statistics without dwelling on heavy mathematical development. The book begins by describing the important role statistics play in environmental science. It focuses on how to collect data, highlighting the importance of sampling and experimental design in conducting rigorous science. It presents a variety of key topics specifically related to environmental science such as monitoring, impact assessment, risk assessment, correlated and censored data analysis, to name just a few. Revised, updated or expanded material on: Data Quality Objectives Generalized Linear Models Spatial Data Analysis Censored Data Monte Carlo Risk Assessment There are numerous books on environmental statistics; however, while some focus on multivariate methods and others on the basic components of probability distributions and how they can be used for modeling phenomenon, most do not include the material on sampling and experimental design that this one does. It is the variety of coverage, not sacrificing too much depth for breadth, that sets this book apart.
Author | : Barry Glaz |
Publisher | : John Wiley & Sons |
Total Pages | : 672 |
Release | : 2020-01-22 |
Genre | : Technology & Engineering |
ISBN | : 0891183590 |
Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
Author | : D.R. Helsel |
Publisher | : Elsevier |
Total Pages | : 539 |
Release | : 1993-03-03 |
Genre | : Science |
ISBN | : 0080875084 |
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Author | : Song S. Qian |
Publisher | : CRC Press |
Total Pages | : 560 |
Release | : 2016-11-03 |
Genre | : Mathematics |
ISBN | : 1498728731 |
Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.