Statistics and Data Science for Teachers

Statistics and Data Science for Teachers
Author: Anna Bargagliotti
Publisher:
Total Pages:
Release: 2021
Genre: Statistics
ISBN: 9781734223545

"A main goal of Statistics and Data Science for Teachers is to provide teacher educators with a resource to guide entire courses and professional development, or portions of courses and professional development when preparing teachers of all school level grade levels to teach the foundations of statistics and data science in their classrooms. In supporting the spirit of Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II), this book presents statistical ideas through investigations and engagement with the statistical problem-solving process of formulating statistical investigative questions, collecting/considering data, analyzing data, and interpreting results"--

Data Science in Education Using R

Data Science in Education Using R
Author: Ryan A. Estrellado
Publisher: Routledge
Total Pages: 315
Release: 2020-10-26
Genre: Education
ISBN: 1000200906

Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Dear Data

Dear Data
Author: Giorgia Lupi
Publisher: Chronicle Books
Total Pages: 304
Release: 2016-09-13
Genre: Design
ISBN: 1616895462

Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates "the infinitesimal, incomplete, imperfect, yet exquisitely human details of life," in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere.

Data Science for Undergraduates

Data Science for Undergraduates
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 139
Release: 2018-11-11
Genre: Education
ISBN: 0309475597

Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.

Teaching Statistics

Teaching Statistics
Author: Andrew Gelman
Publisher: OUP Oxford
Total Pages: 353
Release: 2002-08-08
Genre: Mathematics
ISBN: 0191606995

Students in the sciences, economics, psychology, social sciences, and medicine take introductory statistics. Statistics is increasingly offered at the high school level as well. However, statistics can be notoriously difficult to teach as it is seen by many students as difficult and boring, if not irrelevant to their subject of choice. To help dispel these misconceptions, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, examples and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and combines chapters such as, 'First week of class', with exercises to break the ice and get students talking; then 'Descriptive statistics' , collecting and displaying data; then follows the traditional topics - linear regression, data collection, probability and inference. Part II gives tips on what does and what doesn't work in class: how to set up effective demonstrations and examples, how to encourage students to participate in class and work effectively in group projects. A sample course plan is provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics and sampling.

Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II)

Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II)
Author: Anna Bargagliotti
Publisher:
Total Pages: 124
Release: 2020
Genre: Statistics
ISBN: 9781734223514

"This document lays out a curriculum framework for pre-K-12 educational programs that is designed to help students achieve data literacy and become statistically literate. The framework and subsequent sections in this book recommend curriculum and implementation strategies covering pre-K-12 statistics education"--

Mindset Mathematics

Mindset Mathematics
Author: Jo Boaler
Publisher: John Wiley & Sons
Total Pages: 288
Release: 2017-08-28
Genre: Education
ISBN: 1119358809

Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the first-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.

The Teaching and Learning of Statistics

The Teaching and Learning of Statistics
Author: Dani Ben-Zvi
Publisher: Springer
Total Pages: 325
Release: 2015-12-24
Genre: Education
ISBN: 3319234706

This book presents the breadth and diversity of empirical and practical work done on statistics education around the world. A wide range of methods are used to respond to the research questions that form it's base. Case studies of single students or teachers aimed at understanding reasoning processes, large-scale experimental studies attempting to generalize trends in the teaching and learning of statistics are both employed. Various epistemological stances are described and utilized. The teaching and learning of statistics is presented in multiple contexts in the book. These include designed settings for young children, students in formal schooling, tertiary level students, vocational schools, and teacher professional development. A diversity is evident also in the choices of what to teach (curriculum), when to teach (learning trajectory), how to teach (pedagogy), how to demonstrate evidence of learning (assessment) and what challenges teachers and students face when they solve statistical problems (reasoning and thinking).

R for Data Science

R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Total Pages: 521
Release: 2016-12-12
Genre: Computers
ISBN: 1491910364

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results