Statistics And Data Analysis For Social Science
Download Statistics And Data Analysis For Social Science full books in PDF, epub, and Kindle. Read online free Statistics And Data Analysis For Social Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Eric J. Krieg |
Publisher | : SAGE Publications |
Total Pages | : 457 |
Release | : 2019-07-11 |
Genre | : Social Science |
ISBN | : 1544352670 |
Apply statistics to your everyday life. Statistics and Data Analysis for Social Science helps students to build a strong foundational understanding of statistics by providing clarity around when and why statistics useful. Rather than focusing on the "how to" of statistics, author Eric J. Krieg simplifies the complexity of statistical calculations by introducing only what is necessary to understanding each concept. Every chapter is written around and applied to a different social problem or issues—enabling students to broaden their imagination about the statistical "tools" that can be used to make sense of our world and, maybe, to make the world a better place. In addition to updating all the tables and examples with new data, the Second Edition has replaced the section on SPSS with three new sets of exercises at the end of each chapter: Chapter Exercises for students complete during their reading and bring questions to class, In-Class Exercises that focus on the areas that students struggled with during their reading, and Homework Exercises that can be assigned if students need extra practice with the concepts.
Author | : Eric J. Krieg |
Publisher | : Pearson |
Total Pages | : 392 |
Release | : 2013-11-01 |
Genre | : Social sciences |
ISBN | : 9781292041230 |
For a one-semester, undergraduate introductory course in social statistics. Statistical tools for understanding the social world. This first edition text seeks to answer the question, universally asked by the social science student, Why statistics? The author introduces only those statistical concepts that are necessary to understand, interpret, and present social science research. All concepts are introduced in the context of a social science application, and strong emphasis is placed on demonstrating what data looks like, as opposed to giving theoretical explanations. Complexity of calculations is reduced to those elements necessary for understanding the statistical concept. Optional technology use is paired with the core elements of the course, making this text a pragmatic and engaging introduction to the practice of social statistics.
Author | : Elena Llaudet |
Publisher | : Princeton University Press |
Total Pages | : 256 |
Release | : 2022-11-29 |
Genre | : Computers |
ISBN | : 0691199434 |
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Author | : Kosuke Imai |
Publisher | : Princeton University Press |
Total Pages | : 464 |
Release | : 2021-03-16 |
Genre | : Political Science |
ISBN | : 0691191093 |
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Author | : R. Mark Sirkin |
Publisher | : SAGE |
Total Pages | : 636 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 9781412905466 |
Do your students lack confidence in their ability to handle quantitative work? Do they get confused about how to enter statistical data on SAS, SPSS, and Excel programs? The new Third Edition of the bestselling Statistics for the Social Sciences is the solution to these dilemmas Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fearing them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained. The book includes lists of key concepts, chapter exercises, topic boxes, and more
Author | : Christian Heumann |
Publisher | : Springer Nature |
Total Pages | : 584 |
Release | : 2023-01-30 |
Genre | : Mathematics |
ISBN | : 3031118332 |
Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
Author | : Quan Li |
Publisher | : Oxford University Press |
Total Pages | : 369 |
Release | : 2018-05-09 |
Genre | : Political Science |
ISBN | : 0190656247 |
Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.
Author | : Russell T. Warne |
Publisher | : Cambridge University Press |
Total Pages | : 612 |
Release | : 2020-12-17 |
Genre | : Psychology |
ISBN | : 110889853X |
The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
Author | : Michael J. Albers |
Publisher | : John Wiley & Sons |
Total Pages | : 234 |
Release | : 2017-04-03 |
Genre | : Mathematics |
ISBN | : 111929018X |
Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.
Author | : Lisa Daniels |
Publisher | : SAGE Publications |
Total Pages | : 525 |
Release | : 2019-01-11 |
Genre | : Social Science |
ISBN | : 1506371825 |
An Introduction to Statistics and Data Analysis Using Stata® by Lisa Daniels and Nicholas Minot provides a step-by-step introduction for statistics, data analysis, or research methods classes with Stata. Concise descriptions emphasize the concepts behind statistics for students rather than the derivations of the formulas. With real-world examples from a variety of disciplines and extensive detail on the commands in Stata, this text provides an integrated approach to research design, statistical analysis, and report writing for social science students.