Statistical Techniques For Transportation Engineering
Download Statistical Techniques For Transportation Engineering full books in PDF, epub, and Kindle. Read online free Statistical Techniques For Transportation Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kumar Molugaram |
Publisher | : Butterworth-Heinemann |
Total Pages | : 555 |
Release | : 2017-03-03 |
Genre | : Computers |
ISBN | : 0128116420 |
Statistical Techniques for Transportation Engineering is written with a systematic approach in mind and covers a full range of data analysis topics, from the introductory level (basic probability, measures of dispersion, random variable, discrete and continuous distributions) through more generally used techniques (common statistical distributions, hypothesis testing), to advanced analysis and statistical modeling techniques (regression, AnoVa, and time series). The book also provides worked out examples and solved problems for a wide variety of transportation engineering challenges. - Demonstrates how to effectively interpret, summarize, and report transportation data using appropriate statistical descriptors - Teaches how to identify and apply appropriate analysis methods for transportation data - Explains how to evaluate transportation proposals and schemes with statistical rigor
Author | : Clifford Spiegelman |
Publisher | : CRC Press |
Total Pages | : 360 |
Release | : 2016-04-19 |
Genre | : Mathematics |
ISBN | : 143989454X |
By discussing statistical concepts in the context of transportation planning and operations, Transportation Statistics and Microsimulation provides the necessary background for making informed transportation-related decisions. It explains the why behind standard methods and uses real-world transportation examples and problems to illustrate key conc
Author | : Simon Washington |
Publisher | : CRC Press |
Total Pages | : 496 |
Release | : 2020-01-30 |
Genre | : Technology & Engineering |
ISBN | : 0429520751 |
The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.
Author | : Simon P. Washington |
Publisher | : CRC Press |
Total Pages | : 546 |
Release | : 2010-12-02 |
Genre | : Technology & Engineering |
ISBN | : 142008285X |
The complexity, diversity, and random nature of transportation problems necessitates a broad analytical toolbox. Describing tools commonly used in the field, Statistical and Econometric Methods for Transportation Data Analysis, Second Edition provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies covering applications in various aspects of transportation planning, engineering, safety, and economics. After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material. New to the Second Edition A subsection on Tobit and censored regressions An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods New chapter that presents logistic regression commonly used to model binary outcomes New chapter on ordered probability models New chapters on random-parameter models and Bayesian statistical modeling New examples and data sets Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.
Author | : Dušan Teodorović |
Publisher | : CRC Press |
Total Pages | : 377 |
Release | : 2020-08-20 |
Genre | : Technology & Engineering |
ISBN | : 1000097706 |
Quantitative Methods in Transportation provides the most useful, simple, and advanced quantitative techniques for solving real-life transportation engineering problems. It aims to help transportation engineers and analysts to predict travel and freight demand, plan new transportation networks, and develop various traffic control strategies that are safer, more cost effective, and greener. Transportation networks can be exceptionally large, and this makes many transportation problems combinatorial, and the challenges are compounded by the stochastic and independent nature of trip-planners decision making. Methods outlined in this book range from linear programming, multi-attribute decision making, data envelopment analysis, probability theory, and simulation to computer techniques such as genetic algorithms, simulated annealing, tabu search, ant colony optimization, and bee colony optimization. The book is supported with problems and has a solutions manual to aid course instructors.
Author | : ITE (Institute of Transportation Engineers) |
Publisher | : John Wiley & Sons |
Total Pages | : 688 |
Release | : 2016-01-26 |
Genre | : Technology & Engineering |
ISBN | : 1118762304 |
Get a complete look into modern traffic engineering solutions Traffic Engineering Handbook, Seventh Edition is a newly revised text that builds upon the reputation as the go-to source of essential traffic engineering solutions that this book has maintained for the past 70 years. The updated content reflects changes in key industry standards, and shines a spotlight on the needs of all users, the design of context-sensitive roadways, and the development of more sustainable transportation solutions. Additionally, this resource features a new organizational structure that promotes a more functionally-driven, multimodal approach to planning, designing, and implementing transportation solutions. A branch of civil engineering, traffic engineering concerns the safe and efficient movement of people and goods along roadways. Traffic flow, road geometry, sidewalks, crosswalks, cycle facilities, shared lane markings, traffic signs, traffic lights, and more—all of these elements must be considered when designing public and private sector transportation solutions. Explore the fundamental concepts of traffic engineering as they relate to operation, design, and management Access updated content that reflects changes in key industry-leading resources, such as the Highway Capacity Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), AASSHTO Policy on Geometric Design, Highway Safety Manual (HSM), and Americans with Disabilities Act Understand the current state of the traffic engineering field Leverage revised information that homes in on the key topics most relevant to traffic engineering in today's world, such as context-sensitive roadways and sustainable transportation solutions Traffic Engineering Handbook, Seventh Edition is an essential text for public and private sector transportation practitioners, transportation decision makers, public officials, and even upper-level undergraduate and graduate students who are studying transportation engineering.
Author | : Shen Liu |
Publisher | : Academic Press |
Total Pages | : 208 |
Release | : 2015-11-20 |
Genre | : Mathematics |
ISBN | : 0081006519 |
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 83 |
Release | : 1996-03-15 |
Genre | : Computers |
ISBN | : 0309176085 |
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
Author | : Mashrur Chowdhury |
Publisher | : Elsevier |
Total Pages | : 572 |
Release | : 2024-11-02 |
Genre | : Computers |
ISBN | : 0443138796 |
Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
Author | : D.R. Helsel |
Publisher | : Elsevier |
Total Pages | : 539 |
Release | : 1993-03-03 |
Genre | : Science |
ISBN | : 0080875084 |
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.