Discrimination and Classification

Discrimination and Classification
Author: David J. Hand
Publisher:
Total Pages: 240
Release: 1981-11-04
Genre: Mathematics
ISBN:

Distribution-free methods; Parameterized distributions; Linear discriminant functions; Discrete variables; Variable selection; Cluster analysis; Miscellaneous topics.

Statistical Methods of Discrimination and Classification

Statistical Methods of Discrimination and Classification
Author: Sung C. Choi
Publisher: Elsevier
Total Pages: 145
Release: 2014-05-17
Genre: Mathematics
ISBN: 1483190986

Statistical Methods of Discrimination and Classification: Advances in Theory and Applications is a collection of papers that tackles the multivariate problems of discriminating and classifying subjects into exclusive population. The book presents 13 papers that cover that advancement in the statistical procedure of discriminating and classifying. The studies in the text primarily focus on various methods of discriminating and classifying variables, such as multiple discriminant analysis in the presence of mixed continuous and categorical data; choice of the smoothing parameter and efficiency of k-nearest neighbor classification; and assessing the performance of an allocation rule. The book will be of great use to researchers and practitioners of wide array of scientific disciplines, including engineering, psychology, biology, and physics.

Multivariate Statistical Analysis

Multivariate Statistical Analysis
Author: Parimal Mukhopadhyay
Publisher: World Scientific
Total Pages: 568
Release: 2009
Genre: Mathematics
ISBN: 9812791752

"This textbook presents a classical approach to some techniques of multivariate analysis in a simple and transparent manner. It offers clear and concise development of the concepts; interpretation of the output of the analysis; and criteria for selection of the methods, taking into account the strengths and weaknesses of each." "This book is ideal as an advanced textbook for graduate students in statistics and other disciplines like social, biological and physical sciences. It will also be of benefit to professional statisticians." --Book Jacket.

A First Course in Multivariate Statistics

A First Course in Multivariate Statistics
Author: Bernard Flury
Publisher: Springer Science & Business Media
Total Pages: 723
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475727658

A comprehensive and self-contained introduction to the field, carefully balancing mathematical theory and practical applications. It starts at an elementary level, developing concepts of multivariate distributions from first principles. After a chapter on the multivariate normal distribution reviewing the classical parametric theory, methods of estimation are explored using the plug-in principles as well as maximum likelihood. Two chapters on discrimination and classification, including logistic regression, form the core of the book, followed by methods of testing hypotheses developed from heuristic principles, likelihood ratio tests and permutation tests. Finally, the powerful self-consistency principle is used to introduce principal components as a method of approximation, rounded off by a chapter on finite mixture analysis.

Classification, Clustering, and Data Analysis

Classification, Clustering, and Data Analysis
Author: Krzystof Jajuga
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Computers
ISBN: 3642561810

The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.

Statistical Pattern Recognition

Statistical Pattern Recognition
Author: Andrew R. Webb
Publisher: John Wiley & Sons
Total Pages: 516
Release: 2003-07-25
Genre: Mathematics
ISBN: 0470854782

Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a

Discrimination and Privacy in the Information Society

Discrimination and Privacy in the Information Society
Author: Bart Custers
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2012-08-11
Genre: Technology & Engineering
ISBN: 3642304877

Vast amounts of data are nowadays collected, stored and processed, in an effort to assist in making a variety of administrative and governmental decisions. These innovative steps considerably improve the speed, effectiveness and quality of decisions. Analyses are increasingly performed by data mining and profiling technologies that statistically and automatically determine patterns and trends. However, when such practices lead to unwanted or unjustified selections, they may result in unacceptable forms of discrimination. Processing vast amounts of data may lead to situations in which data controllers know many of the characteristics, behaviors and whereabouts of people. In some cases, analysts might know more about individuals than these individuals know about themselves. Judging people by their digital identities sheds a different light on our views of privacy and data protection. This book discusses discrimination and privacy issues related to data mining and profiling practices. It provides technological and regulatory solutions, to problems which arise in these innovative contexts. The book explains that common measures for mitigating privacy and discrimination, such as access controls and anonymity, fail to properly resolve privacy and discrimination concerns. Therefore, new solutions, focusing on technology design, transparency and accountability are called for and set forth.

Statistical Methods in Social Science Research

Statistical Methods in Social Science Research
Author: S P Mukherjee
Publisher: Springer
Total Pages: 158
Release: 2018-10-05
Genre: Social Science
ISBN: 9811321469

This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.

Statistical Methods in the Atmospheric Sciences

Statistical Methods in the Atmospheric Sciences
Author: Daniel S. Wilks
Publisher: Academic Press
Total Pages: 697
Release: 2011-07-04
Genre: Science
ISBN: 0123850231

Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. - Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting - Many worked examples - End-of-chapter exercises, with answers provided

Statistical Methods in Water Resources

Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
Total Pages: 539
Release: 1993-03-03
Genre: Science
ISBN: 0080875084

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.