Statistical Methods For Stochastic Differential Equations
Download Statistical Methods For Stochastic Differential Equations full books in PDF, epub, and Kindle. Read online free Statistical Methods For Stochastic Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mathieu Kessler |
Publisher | : CRC Press |
Total Pages | : 507 |
Release | : 2012-05-17 |
Genre | : Mathematics |
ISBN | : 1439849765 |
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to th
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Peter E. Kloeden |
Publisher | : Springer Science & Business Media |
Total Pages | : 666 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662126168 |
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Author | : Mathieu Kessler |
Publisher | : CRC Press |
Total Pages | : 509 |
Release | : 2012-05-17 |
Genre | : Mathematics |
ISBN | : 1439849404 |
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.
Author | : Jaya P. N. Bishwal |
Publisher | : Springer |
Total Pages | : 271 |
Release | : 2007-09-26 |
Genre | : Mathematics |
ISBN | : 3540744487 |
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
Author | : Zeev Schuss |
Publisher | : |
Total Pages | : 342 |
Release | : 1980 |
Genre | : Mathematics |
ISBN | : |
Presents theory, sources, and applications of stochastic differential equations of Ito's type; those containing white noise. Closely studies first passage problems by modern singular perturbation methods and their role in various fields of science. Introduces analytical methods to obtain information on probabilistic quantities. Demonstrates the role of partial differential equations in this context. Clarifies the relationship between the complex mathematical theories involved and sources of the problem for physicists, chemists, engineers, and other non-mathematical specialists.
Author | : Sergej S. Artemiev |
Publisher | : VSP |
Total Pages | : 188 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 9789067642507 |
This book deals with numerical analysis of systems of both ordinary and stochastic differential equations. The first chapter is devoted to numerical solution problems of the Cauchy problem for stiff ordinary differential equation (ODE) systems by Rosenbrock-type methods (RTMs). Here, general solutions of consistency equations are obtained, which lead to the construction of RTMs from the first to the fourth order. The second chapter deals with statistical simulation problems of the solution of the Cauchy problem for stochastic differential equation (SDE) systems. The mean-square convergence theorem is considered, as well as Taylor expansions of numerical solutions. Also included are applications of numerical methods of SDE solutions to partial differential equations and to analysis and synthesis problems of automated control of stochastic systems.
Author | : Sasha Cyganowski |
Publisher | : Springer Science & Business Media |
Total Pages | : 323 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642561446 |
This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.
Author | : Howard J. Carmichael |
Publisher | : Springer Science & Business Media |
Total Pages | : 384 |
Release | : 2013-04-17 |
Genre | : Science |
ISBN | : 3662038757 |
This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.
Author | : Joseph L. McCauley |
Publisher | : Cambridge University Press |
Total Pages | : 219 |
Release | : 2013-02-21 |
Genre | : Business & Economics |
ISBN | : 0521763401 |
Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.