Statistical Methods For Astronomical Data Analysis
Download Statistical Methods For Astronomical Data Analysis full books in PDF, epub, and Kindle. Read online free Statistical Methods For Astronomical Data Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Asis Kumar Chattopadhyay |
Publisher | : Springer |
Total Pages | : 356 |
Release | : 2014-10-01 |
Genre | : Mathematics |
ISBN | : 149391507X |
This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.
Author | : Eric D. Feigelson |
Publisher | : Cambridge University Press |
Total Pages | : 495 |
Release | : 2012-07-12 |
Genre | : Science |
ISBN | : 052176727X |
Modern Statistical Methods for Astronomy: With R Applications.
Author | : Željko Ivezić |
Publisher | : Princeton University Press |
Total Pages | : 550 |
Release | : 2014-01-12 |
Genre | : Science |
ISBN | : 0691151687 |
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers
Author | : J.-L. Starck |
Publisher | : Springer Science & Business Media |
Total Pages | : 338 |
Release | : 2007-06-21 |
Genre | : Science |
ISBN | : 3540330259 |
With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with topics that are at or beyond the state of the art. It presents material which is more algorithmically oriented than most alternatives and broaches new areas like ridgelet and curvelet transforms. Throughout the book various additions and updates have been made.
Author | : Gutti Jogesh Babu |
Publisher | : CRC Press |
Total Pages | : 242 |
Release | : 1996-08-01 |
Genre | : Mathematics |
ISBN | : 9780412983917 |
Modern astronomers encounter a vast range of challenging statistical problems, yet few are familiar with the wealth of techniques developed by statisticians. Conversely, few statisticians deal with the compelling problems confronted in astronomy. Astrostatistics bridges this gap. Authored by a statistician-astronomer team, it provides professionals and advanced students in both fields with exposure to issues of mutual interest. In the first half of the book the authors introduce statisticians to stellar, galactic, and cosmological astronomy and discuss the complex character of astronomical data. For astronomers, they introduce the statistical principles of nonparametrics, multivariate analysis, time series analysis, density estimation, and resampling methods. The second half of the book is organized by statistical topic. Each chapter contains examples of problems encountered astronomical research and highlights methodological issues. The final chapter explores some controversial issues in astronomy that have a strong statistical component. The authors provide an extensive bibliography and references to software for implementing statistical methods. The "marriage" of astronomy and statistics is a natural one and benefits both disciplines. Astronomers need the tools and methods of statistics to interpret the vast amount of data they generate, and the issues related to astronomical data pose intriguing challenges for statisticians. Astrostatistics paves the way to improved statistical analysis of astronomical data and provides a common ground for future collaboration between the two fields.
Author | : Michael J. Way |
Publisher | : CRC Press |
Total Pages | : 744 |
Release | : 2012-03-29 |
Genre | : Computers |
ISBN | : 1439841748 |
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines
Author | : Joseph M. Hilbe |
Publisher | : Cambridge University Press |
Total Pages | : 429 |
Release | : 2017-04-27 |
Genre | : Mathematics |
ISBN | : 1108210740 |
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
Author | : Eric D. Feigelson |
Publisher | : Springer Science & Business Media |
Total Pages | : 544 |
Release | : 2012-08-15 |
Genre | : Mathematics |
ISBN | : 146143520X |
This volume contains a selection of chapters based on papers to be presented at the Fifth Statistical Challenges in Modern Astronomy Symposium. The symposium will be held June 13-15th at Penn State University. Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy V conference will bring astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses are all important themes to be covered in detail. Many problems will be introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitized sky surveys.
Author | : V. di Gesù |
Publisher | : Springer Science & Business Media |
Total Pages | : 521 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461594332 |
The international Workshop on "Data Analysis in Astronomy" was in tended to give a presentation of experiences that have been acqui red in data analysis and image processing, developments and appli cations that are steadly growing up in Astronomy. The quality and the quantity of ground and satellite observations require more so phisticated data analysis methods and better computational tools. The Workshop has reviewed the present state of the art, explored new methods and discussed a wide range of applications. The topics which have been selected have covered the main fields of interest for data analysis in Astronomy. The Workshop has been focused on the methods used and their significant applications. Results which gave a major contribution to the physical interpre tation of the data have been stressed in the presentations. Atten tion has been devoted to the description of operational system for data analysis in astronomy. The success of the meeting has been the results of the coordinated effort of several people from the organizers to those who presen ted a contribution and/or took part in the discussion. We wish to thank the members of the Workshop scientific committee Prof. M. Ca paccioli, Prof. G. De Biase, Prof. G. Sedmak, Prof. A. Zichichi and of the local organizing committee Dr. R. Buccheri and Dr. M.C. Macca rone together with Miss P. Savalli and Dr. A. Gabriele of the E. Majo rana Center for their support and the unvaluable part in arranging the Workshop.
Author | : Vicent J. Martinez |
Publisher | : CRC Press |
Total Pages | : 451 |
Release | : 2001-12-20 |
Genre | : Mathematics |
ISBN | : 1420036165 |
Over the last decade, statisticians have developed new statistical tools in the field of spatial point processes. At the same time, observational efforts have yielded a huge amount of new cosmological data to analyze. Although the main tools in astronomy for comparing theoretical results with observation are statistical, in recent years, cosmologis