Statistical Learning And Pattern Analysis For Image And Video Processing
Download Statistical Learning And Pattern Analysis For Image And Video Processing full books in PDF, epub, and Kindle. Read online free Statistical Learning And Pattern Analysis For Image And Video Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Nanning Zheng |
Publisher | : Springer Science & Business Media |
Total Pages | : 371 |
Release | : 2009-07-25 |
Genre | : Computers |
ISBN | : 1848823126 |
Why are We Writing This Book? Visual data (graphical, image, video, and visualized data) affect every aspect of modern society. The cheap collection, storage, and transmission of vast amounts of visual data have revolutionized the practice of science, technology, and business. Innovations from various disciplines have been developed and applied to the task of designing intelligent machines that can automatically detect and exploit useful regularities (patterns) in visual data. One such approach to machine intelligence is statistical learning and pattern analysis for visual data. Over the past two decades, rapid advances have been made throughout the ?eld of visual pattern analysis. Some fundamental problems, including perceptual gro- ing,imagesegmentation, stereomatching, objectdetectionandrecognition,and- tion analysis and visual tracking, have become hot research topics and test beds in multiple areas of specialization, including mathematics, neuron-biometry, and c- nition. A great diversity of models and algorithms stemming from these disciplines has been proposed. To address the issues of ill-posed problems and uncertainties in visual pattern modeling and computing, researchers have developed rich toolkits based on pattern analysis theory, harmonic analysis and partial differential eq- tions, geometry and group theory, graph matching, and graph grammars. Among these technologies involved in intelligent visual information processing, statistical learning and pattern analysis is undoubtedly the most popular and imp- tant approach, and it is also one of the most rapidly developing ?elds, with many achievements in recent years. Above all, it provides a unifying theoretical fra- work for intelligent visual information processing applications.
Author | : Francesco Camastra |
Publisher | : Springer |
Total Pages | : 564 |
Release | : 2015-07-21 |
Genre | : Computers |
ISBN | : 144716735X |
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Author | : Christopher M. Bishop |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-08-23 |
Genre | : Computers |
ISBN | : 9781493938438 |
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author | : Himanshu Singh |
Publisher | : Apress |
Total Pages | : 177 |
Release | : 2019-02-26 |
Genre | : Computers |
ISBN | : 1484241495 |
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.
Author | : Olivier Lezoray |
Publisher | : CRC Press |
Total Pages | : 570 |
Release | : 2017-07-12 |
Genre | : Computers |
ISBN | : 1439855080 |
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Author | : Siddhartha Bhattacharyya |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 194 |
Release | : 2018-12-17 |
Genre | : Computers |
ISBN | : 3110551438 |
This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Author | : Nilay Khare |
Publisher | : Springer Nature |
Total Pages | : 378 |
Release | : 2023-01-17 |
Genre | : Computers |
ISBN | : 3031243676 |
This two-volume set (CCIS 1762-1763) constitutes the refereed proceedings of the 4th International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, MIND 2022, held in Bhopal, India, in December 2022. The 64 papers presented in this two-volume set were thoroughly reviewed and selected from 399 submissions. The papers are organized according to the following topical sections: machine learning and computational intelligence; data sciences; image processing and computer vision; network and cyber security.
Author | : Navneet Ghedia |
Publisher | : Springer Nature |
Total Pages | : 91 |
Release | : 2022-01-01 |
Genre | : Technology & Engineering |
ISBN | : 3030909107 |
This book shows how machine learning can detect moving objects in a digital video stream. The authors present different background subtraction approaches, foreground segmentation, and object tracking approaches to accomplish this. They also propose an algorithm that considers a multimodal background subtraction approach that can handle a dynamic background and different constraints. The authors show how the proposed algorithm is able to detect and track 2D & 3D objects in monocular sequences for both indoor and outdoor surveillance environments and at the same time, also able to work satisfactorily in a dynamic background and with challenging constraints. In addition, the shows how the proposed algorithm makes use of parameter optimization and adaptive threshold techniques as intrinsic improvements of the Gaussian Mixture Model. The presented system in the book is also able to handle partial occlusion during object detection and tracking. All the presented work and evaluations were carried out in offline processing with the computation done by a single laptop computer with MATLAB serving as software environment.
Author | : RODRIGO F MELLO |
Publisher | : Springer |
Total Pages | : 373 |
Release | : 2018-08-01 |
Genre | : Computers |
ISBN | : 3319949896 |
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
Author | : Hassanien, Aboul Ella |
Publisher | : IGI Global |
Total Pages | : 1269 |
Release | : 2017-04-03 |
Genre | : Computers |
ISBN | : 1522522301 |
Continuous improvements in technological applications have allowed more opportunities to develop automated systems. This not only leads to higher success in smart data analysis, but it increases the overall probability of technological progression. The Handbook of Research on Machine Learning Innovations and Trends is a key resource on the latest advances and research regarding the vast range of advanced systems and applications involved in machine intelligence. Highlighting multidisciplinary studies on decision theory, intelligent search, and multi-agent systems, this publication is an ideal reference source for professionals and researchers working in the field of machine learning and its applications.