Statistical Inference In Financial And Insurance Mathematics With R
Download Statistical Inference In Financial And Insurance Mathematics With R full books in PDF, epub, and Kindle. Read online free Statistical Inference In Financial And Insurance Mathematics With R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alexandre Brouste |
Publisher | : Elsevier |
Total Pages | : 204 |
Release | : 2017-11-22 |
Genre | : Mathematics |
ISBN | : 0081012616 |
Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables. Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described. In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text. - Examines a range of statistical inference methods in the context of finance and insurance applications - Presents the LAN (local asymptotic normality) property of likelihoods - Combines the proofs of LAN property for different statistical experiments that appears in financial and insurance mathematics - Provides the proper description of such statistical experiments and invites readers to seek optimal estimators (performed in R) for such statistical experiments
Author | : David Ruppert |
Publisher | : Springer |
Total Pages | : 736 |
Release | : 2015-04-21 |
Genre | : Business & Economics |
ISBN | : 1493926144 |
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Author | : René Carmona |
Publisher | : Springer Science & Business Media |
Total Pages | : 595 |
Release | : 2013-12-13 |
Genre | : Business & Economics |
ISBN | : 1461487889 |
Although there are many books on mathematical finance, few deal with the statistical aspects of modern data analysis as applied to financial problems. This textbook fills this gap by addressing some of the most challenging issues facing financial engineers. It shows how sophisticated mathematics and modern statistical techniques can be used in the solutions of concrete financial problems. Concerns of risk management are addressed by the study of extreme values, the fitting of distributions with heavy tails, the computation of values at risk (VaR), and other measures of risk. Principal component analysis (PCA), smoothing, and regression techniques are applied to the construction of yield and forward curves. Time series analysis is applied to the study of temperature options and nonparametric estimation. Nonlinear filtering is applied to Monte Carlo simulations, option pricing and earnings prediction. This textbook is intended for undergraduate students majoring in financial engineering, or graduate students in a Master in finance or MBA program. It is sprinkled with practical examples using market data, and each chapter ends with exercises. Practical examples are solved in the R computing environment. They illustrate problems occurring in the commodity, energy and weather markets, as well as the fixed income, equity and credit markets. The examples, experiments and problem sets are based on the library Rsafd developed for the purpose of the text. The book should help quantitative analysts learn and implement advanced statistical concepts. Also, it will be valuable for researchers wishing to gain experience with financial data, implement and test mathematical theories, and address practical issues that are often ignored or underestimated in academic curricula. This is the new, fully-revised edition to the book Statistical Analysis of Financial Data in S-Plus. René Carmona is the Paul M. Wythes '55 Professor of Engineering and Finance at Princeton University in the department of Operations Research and Financial Engineering, and Director of Graduate Studies of the Bendheim Center for Finance. His publications include over one hundred articles and eight books in probability and statistics. He was elected Fellow of the Institute of Mathematical Statistics in 1984, and of the Society for Industrial and Applied Mathematics in 2010. He is on the editorial board of several peer-reviewed journals and book series. Professor Carmona has developed computer programs for teaching statistics and research in signal analysis and financial engineering. He has worked for many years on energy, the commodity markets and more recently in environmental economics, and he is recognized as a leading researcher and expert in these areas.
Author | : Bradley Efron |
Publisher | : Cambridge University Press |
Total Pages | : 496 |
Release | : 2016-07-21 |
Genre | : Mathematics |
ISBN | : 1108107958 |
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Author | : Marcelo G. Cruz |
Publisher | : John Wiley & Sons |
Total Pages | : 928 |
Release | : 2015-01-20 |
Genre | : Mathematics |
ISBN | : 1118573021 |
A one-stop guide for the theories, applications, and statistical methodologies essential to operational risk Providing a complete overview of operational risk modeling and relevant insurance analytics, Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk offers a systematic approach that covers the wide range of topics in this area. Written by a team of leading experts in the field, the handbook presents detailed coverage of the theories, applications, and models inherent in any discussion of the fundamentals of operational risk, with a primary focus on Basel II/III regulation, modeling dependence, estimation of risk models, and modeling the data elements. Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk begins with coverage on the four data elements used in operational risk framework as well as processing risk taxonomy. The book then goes further in-depth into the key topics in operational risk measurement and insurance, for example diverse methods to estimate frequency and severity models. Finally, the book ends with sections on specific topics, such as scenario analysis; multifactor modeling; and dependence modeling. A unique companion with Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk, the handbook also features: Discussions on internal loss data and key risk indicators, which are both fundamental for developing a risk-sensitive framework Guidelines for how operational risk can be inserted into a firm’s strategic decisions A model for stress tests of operational risk under the United States Comprehensive Capital Analysis and Review (CCAR) program A valuable reference for financial engineers, quantitative analysts, risk managers, and large-scale consultancy groups advising banks on their internal systems, the handbook is also useful for academics teaching postgraduate courses on the methodology of operational risk.
Author | : Arthur Charpentier |
Publisher | : CRC Press |
Total Pages | : 652 |
Release | : 2014-08-26 |
Genre | : Business & Economics |
ISBN | : 1498759823 |
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
Author | : Erik Bølviken |
Publisher | : Cambridge University Press |
Total Pages | : 713 |
Release | : 2014-04-10 |
Genre | : Business & Economics |
ISBN | : 1107782627 |
Focusing on what actuaries need in practice, this introductory account provides readers with essential tools for handling complex problems and explains how simulation models can be created, used and re-used (with modifications) in related situations. The book begins by outlining the basic tools of modelling and simulation, including a discussion of the Monte Carlo method and its use. Part II deals with general insurance and Part III with life insurance and financial risk. Algorithms that can be implemented on any programming platform are spread throughout and a program library written in R is included. Numerous figures and experiments with R-code illustrate the text. The author's non-technical approach is ideal for graduate students, the only prerequisites being introductory courses in calculus and linear algebra, probability and statistics. The book will also be of value to actuaries and other analysts in the industry looking to update their skills.
Author | : Torben Gustav Andersen |
Publisher | : Springer Science & Business Media |
Total Pages | : 1045 |
Release | : 2009-04-21 |
Genre | : Business & Economics |
ISBN | : 3540712976 |
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Author | : Mario V. Wüthrich |
Publisher | : Springer Science & Business Media |
Total Pages | : 438 |
Release | : 2013-04-04 |
Genre | : Mathematics |
ISBN | : 3642313922 |
Risk management for financial institutions is one of the key topics the financial industry has to deal with. The present volume is a mathematically rigorous text on solvency modeling. Currently, there are many new developments in this area in the financial and insurance industry (Basel III and Solvency II), but none of these developments provides a fully consistent and comprehensive framework for the analysis of solvency questions. Merz and Wüthrich combine ideas from financial mathematics (no-arbitrage theory, equivalent martingale measure), actuarial sciences (insurance claims modeling, cash flow valuation) and economic theory (risk aversion, probability distortion) to provide a fully consistent framework. Within this framework they then study solvency questions in incomplete markets, analyze hedging risks, and study asset-and-liability management questions, as well as issues like the limited liability options, dividend to shareholder questions, the role of re-insurance, etc. This work embeds the solvency discussion (and long-term liabilities) into a scientific framework and is intended for researchers as well as practitioners in the financial and actuarial industry, especially those in charge of internal risk management systems. Readers should have a good background in probability theory and statistics, and should be familiar with popular distributions, stochastic processes, martingales, etc.
Author | : Claudia Klüppelberg |
Publisher | : Springer |
Total Pages | : 472 |
Release | : 2014-06-10 |
Genre | : Mathematics |
ISBN | : 3319044869 |
This is a unique book addressing the integration of risk methodology from various fields. It will stimulate intellectual debate and communication across disciplines, promote better risk management practices and contribute to the development of risk management methodologies. Individual chapters explain fundamental risk models and measurement, and address risk and security issues from diverse areas such as finance and insurance, the health sciences, life sciences, engineering and information science. Integrated Risk Sciences is an emerging discipline that considers risks in different fields, aiming at a common language, and at sharing and improving methods developed in different fields. Readers should have a Bachelor degree and have taken at least one basic university course in statistics and probability. The main goal of the book is to provide basic knowledge on risk and security in a common language; the authors have taken particular care to ensure that all content can readily be understood by doctoral students and researchers across disciplines. Each chapter provides simple case studies and examples, open research questions and discussion points, and a selected bibliography inviting readers to further study.