Statistical Inference And Related Topics
Download Statistical Inference And Related Topics full books in PDF, epub, and Kindle. Read online free Statistical Inference And Related Topics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Madan Lal Puri |
Publisher | : Academic Press |
Total Pages | : 365 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483257606 |
Statistical Inference and Related Topics, Volume 2 presents the proceedings of the Summer Research Institute on Statistical Inference for Stochastic Processes, held in Bloomingdale, Indiana on July 31 to August 9, 1975. This book focuses on the theory of statistical inference for stochastic processes. Organized into 15 chapters, this volume begins with an overview of the case of continuous distributions with one real parameter. This text then reviews some results for multidimensional empirical processes and Brownian sheets when they are indexed by families of sets. Other chapters consider a class of cubic spline estimators of probability density functions over a finite interval. This book discusses as well the method to construct nonelimination type sequential procedures to select a subset containing all the superior populations. The final chapter deals with Markov sequences, which are among the most interesting available for study with a rich theory and varied applications. This book is a valuable resource for graduate students and research workers.
Author | : Deborah G. Mayo |
Publisher | : Cambridge University Press |
Total Pages | : 503 |
Release | : 2018-09-20 |
Genre | : Mathematics |
ISBN | : 1108563309 |
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Author | : Larry Wasserman |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 0387217363 |
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author | : Robert W. Keener |
Publisher | : Springer Science & Business Media |
Total Pages | : 543 |
Release | : 2010-09-08 |
Genre | : Mathematics |
ISBN | : 0387938397 |
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Author | : Dev Basu |
Publisher | : IMS |
Total Pages | : 278 |
Release | : 1992 |
Genre | : Mathematics |
ISBN | : 9780940600249 |
Author | : George Casella |
Publisher | : CRC Press |
Total Pages | : 1746 |
Release | : 2024-05-23 |
Genre | : Mathematics |
ISBN | : 1040024025 |
This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Author | : D.A. Sprott |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2000-06-22 |
Genre | : Mathematics |
ISBN | : 0387950192 |
A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.
Author | : Müjgan Tez |
Publisher | : Springer |
Total Pages | : 261 |
Release | : 2018-02-01 |
Genre | : Mathematics |
ISBN | : 3319732412 |
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
Author | : Bradley Efron |
Publisher | : Cambridge University Press |
Total Pages | : 496 |
Release | : 2016-07-21 |
Genre | : Mathematics |
ISBN | : 1108107958 |
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Author | : Miltiadis C. Mavrakakis |
Publisher | : CRC Press |
Total Pages | : 444 |
Release | : 2021-03-28 |
Genre | : Mathematics |
ISBN | : 131536204X |
Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.