Statistical Analysis For Decision Makers In Healthcare
Download Statistical Analysis For Decision Makers In Healthcare full books in PDF, epub, and Kindle. Read online free Statistical Analysis For Decision Makers In Healthcare ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jeffrey C. Bauer |
Publisher | : CRC Press |
Total Pages | : 184 |
Release | : 2017-08-09 |
Genre | : Business & Economics |
ISBN | : 1439800774 |
Americans are bombarded with statistical data each and every day, and healthcare professionals are no exception. All segments of healthcare rely on data provided by insurance companies, consultants, research firms, and the federal government to help them make a host of decisions regarding the delivery of medical services. But while these health pro
Author | : Jeffrey C. Bauer |
Publisher | : Productivity Press |
Total Pages | : 160 |
Release | : 2017-08-09 |
Genre | : |
ISBN | : 9781138469839 |
Americans are bombarded with statistical data each and every day, and healthcare professionals are no exception. All segments of healthcare rely on data provided by insurance companies, consultants, research firms, and the federal government to help them make a host of decisions regarding the delivery of medical services. But while these health professionals rely on data, do they really make the best use of the information? Not if they fail to understand whether the assumptions behind the formulas generating the numbers make sense. Not if they don�t understand that the world of healthcare is flooded with inaccurate, misleading, and even dangerous statistics. Statistical Analysis for Decision Makers in Healthcare: Understanding and Evaluating Critical Information in a Competitive Market, Second Edition explains the fundamental concepts of statistics, as well as their common uses and misuses. Without jargon or mathematical formulas, nationally renowned healthcare expert and author, Jeff Bauer, presents a clear verbal and visual explanation of what statistics really do. He provides a practical discussion of scientific methods and data to show why statistics should never be allowed to compensate for bad science or bad data. Relying on real-world examples, Dr. Bauer stresses a conceptual understanding that empowers readers to apply a scientifically rigorous approach to the evaluation of data. With the tools he supplies, you will learn how to dismantle statistical evidence that goes against common sense. Easy to understand, practical, and even entertaining, this is the book you wish you had when you took statistics in college � and the one you are now glad to have to defend yourself against the abundance of bad studies and misinformation that might otherwise corrupt your decisions.
Author | : M. G. Myriam Hunink |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2014-10-16 |
Genre | : Education |
ISBN | : 1107690471 |
A guide for everyone involved in medical decision making to plot a clear course through complex and conflicting benefits and risks.
Author | : Dean T. Jamison |
Publisher | : World Bank Publications |
Total Pages | : 1449 |
Release | : 2006-04-02 |
Genre | : Medical |
ISBN | : 0821361805 |
Based on careful analysis of burden of disease and the costs ofinterventions, this second edition of 'Disease Control Priorities in Developing Countries, 2nd edition' highlights achievable priorities; measures progresstoward providing efficient, equitable care; promotes cost-effectiveinterventions to targeted populations; and encourages integrated effortsto optimize health. Nearly 500 experts - scientists, epidemiologists, health economists,academicians, and public health practitioners - from around the worldcontributed to the data sources and methodologies, and identifiedchallenges and priorities, resulting in this integrated, comprehensivereference volume on the state of health in developing countries.
Author | : Agency for Healthcare Research and Quality/AHRQ |
Publisher | : Government Printing Office |
Total Pages | : 385 |
Release | : 2014-04-01 |
Genre | : Medical |
ISBN | : 1587634333 |
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Author | : Sofia Dias |
Publisher | : John Wiley & Sons |
Total Pages | : 484 |
Release | : 2018-03-19 |
Genre | : Mathematics |
ISBN | : 1118647505 |
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Author | : Pieter Kubben |
Publisher | : Springer |
Total Pages | : 219 |
Release | : 2018-12-21 |
Genre | : Medical |
ISBN | : 3319997130 |
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Author | : Nicky J. Welton |
Publisher | : John Wiley & Sons |
Total Pages | : 296 |
Release | : 2012-04-12 |
Genre | : Mathematics |
ISBN | : 111830540X |
In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish interventions that are both effective and cost-effective. Usually a single study will not fully address these issues and it is desirable to synthesize evidence from multiple sources. This book aims to provide a practical guide to evidence synthesis for the purpose of decision making, starting with a simple single parameter model, where all studies estimate the same quantity (pairwise meta-analysis) and progressing to more complex multi-parameter structures (including meta-regression, mixed treatment comparisons, Markov models of disease progression, and epidemiology models). A comprehensive, coherent framework is adopted and estimated using Bayesian methods. Key features: A coherent approach to evidence synthesis from multiple sources. Focus is given to Bayesian methods for evidence synthesis that can be integrated within cost-effectiveness analyses in a probabilistic framework using Markov Chain Monte Carlo simulation. Provides methods to statistically combine evidence from a range of evidence structures. Emphasizes the importance of model critique and checking for evidence consistency. Presents numerous worked examples, exercises and solutions drawn from a variety of medical disciplines throughout the book. WinBUGS code is provided for all examples. Evidence Synthesis for Decision Making in Healthcare is intended for health economists, decision modelers, statisticians and others involved in evidence synthesis, health technology assessment, and economic evaluation of health technologies.
Author | : S. K. Hafizul Islam |
Publisher | : John Wiley & Sons |
Total Pages | : 386 |
Release | : 2021-06-29 |
Genre | : Computers |
ISBN | : 1119791685 |
SMART HEALTHCARE SYSTEM DESIGN This book deeply discusses the major challenges and issues for security and privacy aspects of smart health-care systems. The Internet-of-Things (IoT) has emerged as a powerful and promising technology, and though it has significant technological, social, and economic impacts, it also poses new security and privacy challenges. Compared with the traditional internet, the IoT has various embedded devices, mobile devices, a server, and the cloud, with different capabilities to support multiple services. The pervasiveness of these devices represents a huge attack surface and, since the IoT connects cyberspace to physical space, known as a cyber-physical system, IoT attacks not only have an impact on information systems, but also affect physical infrastructure, the environment, and even human security. The purpose of this book is to help achieve a better integration between the work of researchers and practitioners in a single medium for capturing state-of-the-art IoT solutions in healthcare applications, and to address how to improve the proficiency of wireless sensor networks (WSNs) in healthcare. It explores possible automated solutions in everyday life, including the structures of healthcare systems built to handle large amounts of data, thereby improving clinical decisions. The 14 separate chapters address various aspects of the IoT system, such as design challenges, theory, various protocols, implementation issues, as well as several case studies. Smart Healthcare System Design covers the introduction, development, and applications of smart healthcare models that represent the current state-of-the-art of various domains. The primary focus is on theory, algorithms, and their implementation targeted at real-world problems. It will deal with different applications to give the practitioner a flavor of how IoT architectures are designed and introduced into various situations. Audience: Researchers and industry engineers in information technology, artificial intelligence, cyber security, as well as designers of healthcare systems, will find this book very valuable.
Author | : Harold C. Sox |
Publisher | : John Wiley & Sons |
Total Pages | : 330 |
Release | : 2013-05-08 |
Genre | : Medical |
ISBN | : 1118341562 |
Medical Decision Making provides clinicians with a powerful framework for helping patients make decisions that increase the likelihood that they will have the outcomes that are most consistent with their preferences. This new edition provides a thorough understanding of the key decision making infrastructure of clinical practice and explains the principles of medical decision making both for individual patients and the wider health care arena. It shows how to make the best clinical decisions based on the available evidence and how to use clinical guidelines and decision support systems in electronic medical records to shape practice guidelines and policies. Medical Decision Making is a valuable resource for all experienced and learning clinicians who wish to fully understand and apply decision modelling, enhance their practice and improve patient outcomes. “There is little doubt that in the future many clinical analyses will be based on the methods described in Medical Decision Making, and the book provides a basis for a critical appraisal of such policies.” - Jerome P. Kassirer M.D., Distinguished Professor, Tufts University School of Medicine, US and Visiting Professor, Stanford Medical School, US