Stationary Stochastic Models
Download Stationary Stochastic Models full books in PDF, epub, and Kindle. Read online free Stationary Stochastic Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Georg Lindgren |
Publisher | : CRC Press |
Total Pages | : 378 |
Release | : 2012-10-01 |
Genre | : Mathematics |
ISBN | : 1466557796 |
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
Author | : Georg Lindgren |
Publisher | : CRC Press |
Total Pages | : 316 |
Release | : 2013-10-11 |
Genre | : Mathematics |
ISBN | : 1466586192 |
Suitable for a one-semester course, this text teaches students how to use stochastic processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. To enable hands-on practice, MATLAB code is available online.
Author | : Karl Sigman |
Publisher | : Chapman and Hall/CRC |
Total Pages | : 200 |
Release | : 1995-05-15 |
Genre | : Mathematics |
ISBN | : 9780412984310 |
Taking an applied point of view, this book provides an accessible introduction to the theory of stationary random marked point processes on the non-negative real line. The reader will be able to gain an intuitive understanding of stationary marked point processes and be able to apply the theory to stochastic modeling. The emphasis is on time averages and asymptotic stationarity. Proofs of the main results are given using shift-coupling methods and measure theory is kept to a minimum. Examples and exercises are given involving explicit construction of time and event stationary versions, using the 'inspection paradox' as an intuitive guide. The Rate Conservation Law is given and used in applications to queueing theory. The prerequisites are a background in probability theory and stochastic processes up to conditional expectation.
Author | : Uday B. Desai |
Publisher | : Springer Science & Business Media |
Total Pages | : 310 |
Release | : 1986-10-31 |
Genre | : Science |
ISBN | : 9780898381771 |
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Author | : Howard M. Taylor |
Publisher | : Academic Press |
Total Pages | : 410 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Author | : Dariusz Buraczewski |
Publisher | : Springer |
Total Pages | : 325 |
Release | : 2016-07-04 |
Genre | : Mathematics |
ISBN | : 3319296795 |
In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the classical results of Kesten, Goldie, Guivarc'h, and others, and gives an overview of recent results on the topic. It presents the state-of-the-art results in the field of affine stochastic recurrence equations and shows relations with non-affine recursions and multivariate regular variation.
Author | : Andreas Brandt |
Publisher | : |
Total Pages | : 352 |
Release | : 1990-12-21 |
Genre | : Mathematics |
ISBN | : |
One of the basic problems arising in the stochastic modeling of systems is the existence and uniqueness of stationary (limiting) distributions of system characteristics. This monograph presents the basic methods for treating an equation due to Borovkov, particularly for functions that appear in queueing theory and related topics as well as some results obtained by means of these methods for some stochastic models. Also considered are relationships among the stationary distributions related to continuous time and to certain embedded epochs, model continuity and insensitivity of stationary distributions concerning the form of the distribution functions of certain input characteristics.
Author | : Ingemar Nåsell |
Publisher | : Springer Science & Business Media |
Total Pages | : 206 |
Release | : 2011-07-06 |
Genre | : Mathematics |
ISBN | : 3642205291 |
This volume presents explicit approximations of the quasi-stationary distribution and of the expected time to extinction from the state one and from quasi-stationarity for the stochastic logistic SIS model. The approximations are derived separately in three different parameter regions, and then combined into a uniform approximation across all three regions. Subsequently, the results are used to derive thresholds as functions of the population size N.
Author | : A. Brandt |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 344 |
Release | : 1990-12-31 |
Genre | : Mathematics |
ISBN | : 3112727517 |
Keine ausführliche Beschreibung für "Stationary Stochastic Models" verfügbar.
Author | : Oliver Ibe |
Publisher | : Newnes |
Total Pages | : 515 |
Release | : 2013-05-22 |
Genre | : Mathematics |
ISBN | : 0124078397 |
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.