State-Dependent Impulses

State-Dependent Impulses
Author: Irena Rachůnková
Publisher: Springer
Total Pages: 194
Release: 2015-09-29
Genre: Mathematics
ISBN: 9462391270

This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary conditions.

Impulsive Systems with Delays

Impulsive Systems with Delays
Author: Xiaodi Li
Publisher: Springer Nature
Total Pages: 449
Release: 2021-10-15
Genre: Technology & Engineering
ISBN: 9811646872

This book systematically presents the most recent progress in stability and control of impulsive systems with delays. Impulsive systems have recently attracted continued high research interests because they provide a natural framework for mathematical modeling of many real-world processes. It focuses not only on impulsive delayed systems, but also impulsive systems with delayed impulses and impulsive systems with event-triggered mechanism, including their Lyapunov stability, finite-time stability and input-to-state stability synthesis. Special attention is paid to the bilateral effects of the delayed impulses, where comprehensive stability properties are discussed in the framework of time-dependent and state-dependent delays. New original work with event-triggered impulsive control and its applications in multi-agent systems and collective dynamics are also provided. This book will be of use to specialists who are interested in the theory of impulsive differential equations and impulsive control theory, as well as high technology specialists who work in the fields of complex networks and applied mathematics. Also, instructors teaching graduate courses and graduate students will find this book a valuable source of nonlinear system theory.

Impulsive Differential Inclusions

Impulsive Differential Inclusions
Author: John R. Graef
Publisher: Walter de Gruyter
Total Pages: 412
Release: 2013-07-31
Genre: Mathematics
ISBN: 3110295318

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Stability Analysis of Impulsive Functional Differential Equations

Stability Analysis of Impulsive Functional Differential Equations
Author: Ivanka Stamova
Publisher: Walter de Gruyter
Total Pages: 241
Release: 2009-10-16
Genre: Mathematics
ISBN: 3110221829

This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equations is under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied researches and practitioners.

Stability and Convergence of Mechanical Systems with Unilateral Constraints

Stability and Convergence of Mechanical Systems with Unilateral Constraints
Author: Remco I. Leine
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2007-12-29
Genre: Technology & Engineering
ISBN: 3540769757

While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.

New Trends in Differential and Difference Equations and Applications

New Trends in Differential and Difference Equations and Applications
Author: Feliz Manuel Minhós
Publisher: MDPI
Total Pages: 198
Release: 2019-10-14
Genre: Mathematics
ISBN: 3039215388

This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities
Author: Marat Akhmet
Publisher: Springer
Total Pages: 175
Release: 2017-01-23
Genre: Mathematics
ISBN: 9811031800

This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types – those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.

Decision & Control in Management Science

Decision & Control in Management Science
Author: Georges Zaccour
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2013-04-17
Genre: Business & Economics
ISBN: 1475735618

Decision & Control in Management Science analyzes emerging decision problems in the management and engineering sciences. It is divided into five parts. The first part explores methodological issues involved in the optimization of deterministic and stochastic dynamical systems. The second part describes approaches to the model energy and environmental systems and draws policy implications related to the mitigation of pollutants. The third part applies quantitative techniques to problems in finance and economics, such as hedging of options, inflation targeting, and equilibrium asset pricing. The fourth part considers a series of problems in production systems. Optimization methods are put forward to provide optimal policies in areas such as inventory management, transfer-line, flow-shop and other industrial problems. The last part covers game theory. Chapters range from theoretical issues to applications in politics and interactions in franchising systems. Decision & Control in Management Science is an excellent reference covering methodological issues and applications in operations research, optimal control, and dynamic games.

Topics in Fractional Differential Equations

Topics in Fractional Differential Equations
Author: Saïd Abbas
Publisher: Springer Science & Business Media
Total Pages: 403
Release: 2012-08-17
Genre: Mathematics
ISBN: 146144036X

​​​ Topics in Fractional Differential Equations is devoted to the existence and uniqueness of solutions for various classes of Darboux problems for hyperbolic differential equations or inclusions involving the Caputo fractional derivative. ​​Fractional calculus generalizes the integrals and derivatives to non-integer orders. During the last decade, fractional calculus was found to play a fundamental role in the modeling of a considerable number of phenomena; in particular the modeling of memory-dependent and complex media such as porous media. It has emerged as an important tool for the study of dynamical systems where classical methods reveal strong limitations. Some equations present delays which may be finite, infinite, or state-dependent. Others are subject to an impulsive effect. The above problems are studied using the fixed point approach, the method of upper and lower solution, and the Kuratowski measure of noncompactness. This book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. ​

Focal Impulse Theory

Focal Impulse Theory
Author: John Paul Ito
Publisher: Indiana University Press
Total Pages: 393
Release: 2021-01-05
Genre: Music
ISBN: 0253052475

Music is surrounded by movement, from the arching back of the guitarist to the violinist swaying with each bow stroke. To John Paul Ito, these actions are not just a visual display; rather, they reveal what it really means for musicians to move with the beat, organizing the flow of notes from beat to beat and shaping the sound produced. By developing "focal impulse theory," Ito shows how a performer's choices of how to move with the meter can transform the music's expressive contours. Change the dance of the performer's body, and you change the dance of the notes. As Focal Impulse Theory deftly illustrates, bodily movements carry musical meaning and, in a very real sense, are meaning.