Stability and Control of Linear Systems

Stability and Control of Linear Systems
Author: Andrea Bacciotti
Publisher: Springer
Total Pages: 200
Release: 2018-11-02
Genre: Technology & Engineering
ISBN: 3030024059

This advanced textbook introduces the main concepts and advances in systems and control theory, and highlights the importance of geometric ideas in the context of possible extensions to the more recent developments in nonlinear systems theory. Although inspired by engineering applications, the content is presented within a strong theoretical framework and with a solid mathematical background, and the reference models are always finite dimensional, time-invariant multivariable linear systems. The book focuses on the time domain approach, but also considers the frequency domain approach, discussing the relationship between the two approaches, especially for single-input-single-output systems. It includes topics not usually addressed in similar books, such as a comparison between the frequency domain and the time domain approaches, bounded input bounded output stability (including a characterization in terms of canonical decomposition), and static output feedback stabilization for which a simple and original criterion in terms of generalized inverse matrices is proposed. The book is an ideal learning resource for graduate students of control theory and automatic control courses in engineering and mathematics, as well as a reference or self-study guide for engineers and applied mathematicians.

Stability and Stabilization of Linear Systems with Saturating Actuators

Stability and Stabilization of Linear Systems with Saturating Actuators
Author: Sophie Tarbouriech
Publisher: Springer Science & Business Media
Total Pages: 441
Release: 2011-08-13
Genre: Technology & Engineering
ISBN: 0857299417

This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.

Stability of Linear Delay Differential Equations

Stability of Linear Delay Differential Equations
Author: Dimitri Breda
Publisher: Springer
Total Pages: 162
Release: 2014-10-21
Genre: Science
ISBN: 149392107X

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.

Periodic Systems

Periodic Systems
Author: Sergio Bittanti
Publisher: Springer Science & Business Media
Total Pages: 438
Release: 2009
Genre: Language Arts & Disciplines
ISBN: 1848009100

This book offers a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. It covers an array of topics, presenting an overview of the field and focusing on discrete-time signals and systems.

Perspectives in Robust Control

Perspectives in Robust Control
Author: S.O.Reza Moheimani
Publisher: Springer
Total Pages: 0
Release: 2007-10-03
Genre: Computers
ISBN: 1846285763

This book is based on a workshop entitled "Robust Control workshop 2000". The workshop was held in Newcastle, Australia, from the 6th to the 8th December 2000. Chapters of the book are written by some of the leading researchers in the field of Robust Control. They cover a variety of topics all related to Robust Control and analysis of uncertain systems.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLABĀ®.

Studies in Non-Linear Stability Theory

Studies in Non-Linear Stability Theory
Author: Wiktor Eckhaus
Publisher: Springer Science & Business Media
Total Pages: 125
Release: 2012-12-06
Genre: Science
ISBN: 3642883176

Non-linear stability problems formulated in terms of non-linear partial differential equations have only recently begun to attract attention and it will probably take some time before our understanding of those problems reaches some degree of maturity. The passage from the more classical linear analysis to a non-linear analysis increases the mathematical complexity of the stability theory to a point where it may become discouraging, while some of the more usual mathematical methods lose their applicability. Although considerable progress has been made in recent years, notably in the field of fluid mechanics, much still remains to be done before a more permanent outline of the subject can be established. I have not tried to present in this monograph an account of what has been accomplished, since the rapidly changing features of the field make the periodical literature a more appropriate place for such a review. The aim of this book is to present one particular line of research, originally developed in a series of papers published in 'Journal de Mecanique' 1962-1963, in which I attempted to construct a mathematical theory for certain classes of non-linear stability problems, and to gain some understanding of the non-linear phenomena which are involved. The opportunity to collect the material in this volume has permitted a more coherent presentation, while various points of the analysis have been developed in greater detaiL I hope that a more unified form of the theory has thus been achieved.

Matrix Diagonal Stability in Systems and Computation

Matrix Diagonal Stability in Systems and Computation
Author: Eugenius Kaszkurewicz
Publisher: Springer Science & Business Media
Total Pages: 292
Release: 2000
Genre: Mathematics
ISBN: 9780817640880

"The book provides an essential reference for new methods and analysis related to dynamical systems described by linear and nonlinear ordinary differential equations and difference equations. Researchers, professionals, and graduates in applied mathematics, control engineering, stability of dynamical systems, and scientific computation will find the book a useful guide to current results and developments."--BOOK JACKET.

Stability of Nonautonomous Differential Equations

Stability of Nonautonomous Differential Equations
Author: Luis Barreira
Publisher: Springer
Total Pages: 288
Release: 2007-09-26
Genre: Mathematics
ISBN: 3540747753

This volume covers the stability of nonautonomous differential equations in Banach spaces in the presence of nonuniform hyperbolicity. Topics under discussion include the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, and the construction and regularity of topological conjugacies. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.