Spectral Theory and Geometric Analysis

Spectral Theory and Geometric Analysis
Author: Mikhail Aleksandrovich Shubin
Publisher: American Mathematical Soc.
Total Pages: 223
Release: 2011-02-10
Genre: Mathematics
ISBN: 0821849484

The papers in this volume cover important topics in spectral theory and geometric analysis such as resolutions of smooth group actions, spectral asymptotics, solutions of the Ginzburg-Landau equation, scattering theory, Riemann surfaces of infinite genus and tropical mathematics.

Spectral Theory of Infinite-Area Hyperbolic Surfaces

Spectral Theory of Infinite-Area Hyperbolic Surfaces
Author: David Borthwick
Publisher: Birkhäuser
Total Pages: 471
Release: 2016-07-12
Genre: Mathematics
ISBN: 3319338773

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)

Geometric and Computational Spectral Theory

Geometric and Computational Spectral Theory
Author: Alexandre Girouard
Publisher: American Mathematical Soc.
Total Pages: 298
Release: 2017-10-30
Genre: Mathematics
ISBN: 147042665X

A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.

Shape Optimization and Spectral Theory

Shape Optimization and Spectral Theory
Author: Antoine Henrot
Publisher: De Gruyter Open
Total Pages: 474
Release: 2017-05-08
Genre:
ISBN: 9783110550856

"Shape optimization and spectral theory" is a survey book aiming to give an overview of recent results in spectral geometry and its links with shape optimization. It covers most of the issues which are important for people working in PDE and differential geometry interested in sharp inequalities and qualitative behaviour for eigenvalues of the Laplacian with different kind of boundary conditions (Dirichlet, Robin and Steklov). This includes: existence of optimal shapes, their regularity, the case of special domains like triangles, isospectrality, quantitative form of the isoperimetric inequalities, optimal partitions, universal inequalities and numerical results. Much progress has been made in these extremum problems during the last ten years and this edited volume presents a valuable update to a wide community interested in these topics. List of contributors Antunes Pedro R.S., Ashbaugh Mark, Bonnaillie-Noel Virginie, Brasco Lorenzo, Bucur Dorin, Buttazzo Giuseppe, De Philippis Guido, Freitas Pedro, Girouard Alexandre, Helffer Bernard, Kennedy James, Lamboley Jimmy, Laugesen Richard S., Oudet Edouard, Pierre Michel, Polterovich Iosif, Siudeja Bartlomiej A., Velichkov Bozhidar

Spectral Theory

Spectral Theory
Author: David Borthwick
Publisher: Springer Nature
Total Pages: 339
Release: 2020-03-12
Genre: Mathematics
ISBN: 3030380025

This textbook offers a concise introduction to spectral theory, designed for newcomers to functional analysis. Curating the content carefully, the author builds to a proof of the spectral theorem in the early part of the book. Subsequent chapters illustrate a variety of application areas, exploring key examples in detail. Readers looking to delve further into specialized topics will find ample references to classic and recent literature. Beginning with a brief introduction to functional analysis, the text focuses on unbounded operators and separable Hilbert spaces as the essential tools needed for the subsequent theory. A thorough discussion of the concepts of spectrum and resolvent follows, leading to a complete proof of the spectral theorem for unbounded self-adjoint operators. Applications of spectral theory to differential operators comprise the remaining four chapters. These chapters introduce the Dirichlet Laplacian operator, Schrödinger operators, operators on graphs, and the spectral theory of Riemannian manifolds. Spectral Theory offers a uniquely accessible introduction to ideas that invite further study in any number of different directions. A background in real and complex analysis is assumed; the author presents the requisite tools from functional analysis within the text. This introductory treatment would suit a functional analysis course intended as a pathway to linear PDE theory. Independent later chapters allow for flexibility in selecting applications to suit specific interests within a one-semester course.

Vanishing and Finiteness Results in Geometric Analysis

Vanishing and Finiteness Results in Geometric Analysis
Author: Stefano Pigola
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2008-05-28
Genre: Mathematics
ISBN: 3764386428

This book describes very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods, from spectral theory and qualitative properties of solutions of PDEs, to comparison theorems in Riemannian geometry and potential theory.

Spectral Theory and Quantum Mechanics

Spectral Theory and Quantum Mechanics
Author: Valter Moretti
Publisher: Springer
Total Pages: 962
Release: 2018-01-30
Genre: Mathematics
ISBN: 331970706X

This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."

Probabilistic Methods in Geometry, Topology and Spectral Theory

Probabilistic Methods in Geometry, Topology and Spectral Theory
Author: Yaiza Canzani
Publisher: American Mathematical Soc.
Total Pages: 208
Release: 2019-11-20
Genre: Education
ISBN: 1470441454

This volume contains the proceedings of the CRM Workshops on Probabilistic Methods in Spectral Geometry and PDE, held from August 22–26, 2016 and Probabilistic Methods in Topology, held from November 14–18, 2016 at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. Probabilistic methods have played an increasingly important role in many areas of mathematics, from the study of random groups and random simplicial complexes in topology, to the theory of random Schrödinger operators in mathematical physics. The workshop on Probabilistic Methods in Spectral Geometry and PDE brought together some of the leading researchers in quantum chaos, semi-classical theory, ergodic theory and dynamical systems, partial differential equations, probability, random matrix theory, mathematical physics, conformal field theory, and random graph theory. Its emphasis was on the use of ideas and methods from probability in different areas, such as quantum chaos (study of spectra and eigenstates of chaotic systems at high energy); geometry of random metrics and related problems in quantum gravity; solutions of partial differential equations with random initial conditions. The workshop Probabilistic Methods in Topology brought together researchers working on random simplicial complexes and geometry of spaces of triangulations (with connections to manifold learning); topological statistics, and geometric probability; theory of random groups and their properties; random knots; and other problems. This volume covers recent developments in several active research areas at the interface of Probability, Semiclassical Analysis, Mathematical Physics, Theory of Automorphic Forms and Graph Theory.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry
Author: M.-E. Craioveanu
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2001-10-31
Genre: Mathematics
ISBN: 9781402000522

It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Spectral Geometry of Shapes

Spectral Geometry of Shapes
Author: Jing Hua
Publisher: Academic Press
Total Pages: 152
Release: 2019-10-26
Genre: Computers
ISBN: 0128138424

Spectral Geometry of Shapes presents unique shape analysis approaches based on shape spectrum in differential geometry. It provides insights on how to develop geometry-based methods for 3D shape analysis. The book is an ideal learning resource for graduate students and researchers in computer science, computer engineering and applied mathematics who have an interest in 3D shape analysis, shape motion analysis, image analysis, medical image analysis, computer vision and computer graphics. Due to the rapid advancement of 3D acquisition technologies there has been a big increase in 3D shape data that requires a variety of shape analysis methods, hence the need for this comprehensive resource.