Spectral and Scattering Theory for Second Order Partial Differential Operators

Spectral and Scattering Theory for Second Order Partial Differential Operators
Author: Kiyoshi Mochizuki
Publisher: CRC Press
Total Pages: 232
Release: 2017-06-01
Genre: Mathematics
ISBN: 1498756034

The book is intended for students of graduate and postgraduate level, researchers in mathematical sciences as well as those who want to apply the spectral theory of second order differential operators in exterior domains to their own field. In the first half of this book, the classical results of spectral and scattering theory: the selfadjointness, essential spectrum, absolute continuity of the continuous spectrum, spectral representations, short-range and long-range scattering are summarized. In the second half, recent results: scattering of Schrodinger operators on a star graph, uniform resolvent estimates, smoothing properties and Strichartz estimates, and some applications are discussed.

Spectral and Scattering Theory for Second Order Partial Differential Operators

Spectral and Scattering Theory for Second Order Partial Differential Operators
Author: Kiyoshi Mochizuki
Publisher: CRC Press
Total Pages: 131
Release: 2017-06-01
Genre: Mathematics
ISBN: 1351648942

The book is intended for students of graduate and postgraduate level, researchers in mathematical sciences as well as those who want to apply the spectral theory of second order differential operators in exterior domains to their own field. In the first half of this book, the classical results of spectral and scattering theory: the selfadjointness, essential spectrum, absolute continuity of the continuous spectrum, spectral representations, short-range and long-range scattering are summarized. In the second half, recent results: scattering of Schrodinger operators on a star graph, uniform resolvent estimates, smoothing properties and Strichartz estimates, and some applications are discussed.

Inverse Spectral and Scattering Theory

Inverse Spectral and Scattering Theory
Author: Hiroshi Isozaki
Publisher: Springer Nature
Total Pages: 130
Release: 2020-09-26
Genre: Science
ISBN: 9811581991

The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.

Spectral Geometry of Partial Differential Operators

Spectral Geometry of Partial Differential Operators
Author: Michael Ruzhansky
Publisher: Chapman & Hall/CRC
Total Pages: 0
Release: 2020
Genre: Mathematics
ISBN: 9781138360716

Access; Differential; Durvudkhan; Geometry; Makhmud; Michael; OA; Open; Operators; Partial; Ruzhansky; Sadybekov; Spectral; Suragan.

Advances in Harmonic Analysis and Partial Differential Equations

Advances in Harmonic Analysis and Partial Differential Equations
Author: Vladimir Georgiev
Publisher: Springer Nature
Total Pages: 317
Release: 2020-11-07
Genre: Mathematics
ISBN: 3030582159

This book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area.

Spectral and Scattering Theory for Ordinary Differential Equations

Spectral and Scattering Theory for Ordinary Differential Equations
Author: Christer Bennewitz
Publisher: Springer Nature
Total Pages: 379
Release: 2020-10-27
Genre: Mathematics
ISBN: 3030590887

This graduate textbook offers an introduction to the spectral theory of ordinary differential equations, focusing on Sturm–Liouville equations. Sturm–Liouville theory has applications in partial differential equations and mathematical physics. Examples include classical PDEs such as the heat and wave equations. Written by leading experts, this book provides a modern, systematic treatment of the theory. The main topics are the spectral theory and eigenfunction expansions for Sturm–Liouville equations, as well as scattering theory and inverse spectral theory. It is the first book offering a complete account of the left-definite theory for Sturm–Liouville equations. The modest prerequisites for this book are basic one-variable real analysis, linear algebra, as well as an introductory course in complex analysis. More advanced background required in some parts of the book is completely covered in the appendices. With exercises in each chapter, the book is suitable for advanced undergraduate and graduate courses, either as an introduction to spectral theory in Hilbert space, or to the spectral theory of ordinary differential equations. Advanced topics such as the left-definite theory and the Camassa–Holm equation, as well as bibliographical notes, make the book a valuable reference for experts.

Partial Differential Equations and Spectral Theory

Partial Differential Equations and Spectral Theory
Author: Michael Demuth
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2011-02-01
Genre: Mathematics
ISBN: 303480024X

This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.

Fourier Analysis

Fourier Analysis
Author: Michael Ruzhansky
Publisher: Springer Science & Business Media
Total Pages: 416
Release: 2014-01-18
Genre: Mathematics
ISBN: 3319025503

This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”

Spectral and Scattering Theory

Spectral and Scattering Theory
Author: Alexander G. Ramm
Publisher: Springer Science & Business Media
Total Pages: 207
Release: 2013-06-29
Genre: Mathematics
ISBN: 1489915524

Proceedings of Sessions from the First Congress of the International Society for Analysis, Applications and Computing held in Newark, Delaware, June, 2-, 1997

Perturbation Theory for Linear Operators

Perturbation Theory for Linear Operators
Author: Tosio Kato
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 1995-02-15
Genre: Mathematics
ISBN: 9783540586616

From the reviews: "[...] An excellent textbook in the theory of linear operators in Banach and Hilbert spaces. It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory. [...] I can recommend it for any mathematician or physicist interested in this field." Zentralblatt MATH