Linear Models in Statistics

Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
Total Pages: 690
Release: 2008-01-07
Genre: Mathematics
ISBN: 0470192607

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

A First Course in Linear Model Theory

A First Course in Linear Model Theory
Author: Nalini Ravishanker
Publisher: CRC Press
Total Pages: 494
Release: 2001-12-21
Genre: Mathematics
ISBN: 9781584882473

This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

Modern Statistics with R

Modern Statistics with R
Author: Måns Thulin
Publisher:
Total Pages: 0
Release: 2024
Genre: Mathematics
ISBN: 9781032497457

The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Linear Models

Linear Models
Author: Shayle R. Searle
Publisher: John Wiley & Sons
Total Pages: 682
Release: 2016-10-31
Genre: Mathematics
ISBN: 1118952839

Provides an easy-to-understand guide to statistical linear models and its uses in data analysis This book defines a broad spectrum of statistical linear models that is useful in the analysis of data. Considerable rewriting was done to make the book more reader friendly than the first edition. Linear Models, Second Edition is written in such a way as to be self-contained for a person with a background in basic statistics, calculus and linear algebra. The text includes numerous applied illustrations, numerical examples, and exercises, now augmented with computer outputs in SAS and R. Also new to this edition is: • A greatly improved internal design and format • A short introductory chapter to ease understanding of the order in which topics are taken up • Discussion of additional topics including multiple comparisons and shrinkage estimators • Enhanced discussions of generalized inverses, the MINQUE, Bayes and Maximum Likelihood estimators for estimating variance components Furthermore, in this edition, the second author adds many pedagogical elements throughout the book. These include numbered examples, end-of-example and end-of-proof symbols, selected hints and solutions to exercises available on the book’s website, and references to “big data” in everyday life. Featuring a thorough update, Linear Models, Second Edition includes: • A new internal format, additional instructional pedagogy, selected hints and solutions to exercises, and several more real-life applications • Many examples using SAS and R with timely data sets • Over 400 examples and exercises throughout the book to reinforce understanding Linear Models, Second Edition is a textbook and a reference for upper-level undergraduate and beginning graduate-level courses on linear models, statisticians, engineers, and scientists who use multiple regression or analysis of variance in their work. SHAYLE R. SEARLE, PhD, was Professor Emeritus of Biometry at Cornell University. He was the author of the first edition of Linear Models, Linear Models for Unbalanced Data, and Generalized, Linear, and Mixed Models (with Charles E. McCulloch), all from Wiley. The first edition of Linear Models appears in the Wiley Classics Library. MARVIN H. J. GRUBER, PhD, is Professor Emeritus at Rochester Institute of Technology, School of Mathematical Sciences. Dr. Gruber has written a number of papers and has given numerous presentations at professional meetings during his tenure as a professor at RIT. His fields of interest include regression estimators and the improvement of their efficiency using shrinkage estimators. He has written and published two books on this topic. Another of his books, Matrix Algebra for Linear Models, also published by Wiley, provides good preparation for studying Linear Models. He is a member of the American Mathematical Society, the Institute of Mathematical Statistics and the American Statistical Association.

Learning Statistics with R

Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
Total Pages: 617
Release: 2013-01-13
Genre: Computers
ISBN: 1326189727

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Analysis of Variance, Design, and Regression

Analysis of Variance, Design, and Regression
Author: Ronald Christensen
Publisher: CRC Press
Total Pages: 645
Release: 2018-09-03
Genre: Mathematics
ISBN: 1498730191

Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab®, and SAS code on the author’s website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Panel Data Econometrics with R

Panel Data Econometrics with R
Author: Yves Croissant
Publisher: John Wiley & Sons
Total Pages: 435
Release: 2018-08-10
Genre: Mathematics
ISBN: 1118949188

Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.

Linear Models And Regression With R: An Integrated Approach

Linear Models And Regression With R: An Integrated Approach
Author: Debasis Sengupta
Publisher: World Scientific
Total Pages: 773
Release: 2019-07-30
Genre: Mathematics
ISBN: 9811200424

Starting with the basic linear model where the design and covariance matrices are of full rank, this book demonstrates how the same statistical ideas can be used to explore the more general linear model with rank-deficient design and/or covariance matrices. The unified treatment presented here provides a clearer understanding of the general linear model from a statistical perspective, thus avoiding the complex matrix-algebraic arguments that are often used in the rank-deficient case. Elegant geometric arguments are used as needed.The book has a very broad coverage, from illustrative practical examples in Regression and Analysis of Variance alongside their implementation using R, to providing comprehensive theory of the general linear model with 181 worked-out examples, 227 exercises with solutions, 152 exercises without solutions (so that they may be used as assignments in a course), and 320 up-to-date references.This completely updated and new edition of Linear Models: An Integrated Approach includes the following features: