Special Issue On Data Mining And Knowledge Discovery With Evolutionary Algorithms
Download Special Issue On Data Mining And Knowledge Discovery With Evolutionary Algorithms full books in PDF, epub, and Kindle. Read online free Special Issue On Data Mining And Knowledge Discovery With Evolutionary Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Alex A. Freitas |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2013-11-11 |
Genre | : Computers |
ISBN | : 3662049236 |
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Author | : Oded Maimon |
Publisher | : Springer Science & Business Media |
Total Pages | : 1378 |
Release | : 2006-05-28 |
Genre | : Computers |
ISBN | : 038725465X |
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Author | : Oded Maimon |
Publisher | : Springer Science & Business Media |
Total Pages | : 431 |
Release | : 2007-10-25 |
Genre | : Computers |
ISBN | : 038769935X |
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Author | : Ashish Ghosh |
Publisher | : Springer Science & Business Media |
Total Pages | : 1001 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 3642189652 |
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
Author | : Kalyanmoy Deb |
Publisher | : Springer |
Total Pages | : 734 |
Release | : 2010-11-22 |
Genre | : Computers |
ISBN | : 3642172989 |
6%acceptancerateandshortpapersaddanother13.
Author | : David Cheung |
Publisher | : Springer Science & Business Media |
Total Pages | : 885 |
Release | : 2005-05-10 |
Genre | : Computers |
ISBN | : 3540260765 |
This book constitutes the refereed proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2005, held in Hanoi, Vietnam, in May 2005. The 48 revised full papers and 49 revised short papers presented together with abstracts or extended abstracts of 3 invited talks were carefully reviewed and selected from 327 submissions. The papers are organized in topical sections on theoretical foundations, association rules, biomedical domains, classification and ranking, clustering, dynamic data mining, graphical model discovery, high dimensional data, integration of data warehousing, knowledge management, machine learning, novel algorithms, spatial data, temporal data, and text and Web data mining.
Author | : Beniamino Murgante |
Publisher | : Springer Science & Business Media |
Total Pages | : 765 |
Release | : 2011-06-15 |
Genre | : Computers |
ISBN | : 3642218865 |
The five-volume set LNCS 6782 - 6786 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2011, held in Santander, Spain, in June 2011. The five volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: geographical analysis, urban modeling, spatial statistics; cities, technologies and planning; computational geometry and applications; computer aided modeling, simulation, and analysis; and mobile communications.
Author | : Abbass, Hussein A. |
Publisher | : IGI Global |
Total Pages | : 310 |
Release | : 2001-07-01 |
Genre | : Computers |
ISBN | : 1591400112 |
Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.
Author | : Evangelos Triantaphyllou |
Publisher | : Springer Science & Business Media |
Total Pages | : 371 |
Release | : 2010-06-08 |
Genre | : Computers |
ISBN | : 144191630X |
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Author | : Vasant, Pandian |
Publisher | : IGI Global |
Total Pages | : 913 |
Release | : 2014-11-30 |
Genre | : Computers |
ISBN | : 1466672595 |
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.