Computer Science -- Theory and Applications

Computer Science -- Theory and Applications
Author: Edward Hirsch
Publisher: Springer
Total Pages: 348
Release: 2012-08-11
Genre: Computers
ISBN: 364230642X

This book constitutes the proceedings of the 7th International Computer Science Symposium in Russia, CSR 2012, held in Nizhny Novgorod in July 2012. The 28 full papers presented in this volume were carefully reviewed and selected from 66 submissions. CSR 2012 was one of the events of the Alan Turing Year 2012, the topics dealt with cover substantial parts of theoretical computer science and its applications.

Computer Science Logic

Computer Science Logic
Author: European Association for Computer Science Logic. Conference
Publisher: Springer Science & Business Media
Total Pages: 639
Release: 2006-09-20
Genre: Computers
ISBN: 3540454586

This book constitutes the refereed proceedings of the 20th International Workshop on Computer Science Logic, CSL 2006, held as the 15th Annual Conference of the EACSL in Szeged, Hungary in September 2006. The 37 revised full papers presented together with 4 invited contributions were carefully reviewed and selected from 132 submissions. All current aspects of logic in computer science are addressed, including automated deduction and interactive theorem proving, constructive mathematics and type theory, equational logic and term rewriting, automata and formal logics, modal and temporal logic, model checking, logical aspects of computational complexity, finite model theory, computational proof theory, logic programming and constraints, lambda calculus and combinatory logic, categorical logic and topological semantics, domain theory, database theory, specification, extraction and transformation of programs, logical foundations of programming paradigms, verification of security protocols, linear logic, higher-order logic, nonmonotonic reasoning, as well as logics and type systems for biology.

Logical Foundations of Computer Science

Logical Foundations of Computer Science
Author: S. I. Adi︠a︡n
Publisher: Springer Science & Business Media
Total Pages: 456
Release: 1997-05-28
Genre: Computers
ISBN: 9783540630456

A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

Computer Science Logic

Computer Science Logic
Author: Zoltán Ésik
Publisher: Springer
Total Pages: 639
Release: 2006-09-28
Genre: Computers
ISBN: 3540454594

This book constitutes the refereed proceedings of the 20th International Workshop on Computer Science Logic, CSL 2006. The book presents 37 revised full papers together with 4 invited contributions, addressing all current aspects of logic in computer science. Coverage includes automated deduction and interactive theorem proving, constructive mathematics and type theory, equational logic and term rewriting, automata and formal logics, modal and temporal logic, model checking, finite model theory, and more.

Fine-grained complexity analysis of some combinatorial data science problems

Fine-grained complexity analysis of some combinatorial data science problems
Author: Froese, Vincent
Publisher: Universitätsverlag der TU Berlin
Total Pages: 185
Release: 2018-10-10
Genre: Computers
ISBN: 3798330034

This thesis is concerned with analyzing the computational complexity of NP-hard problems related to data science. For most of the problems considered in this thesis, the computational complexity has not been intensively studied before. We focus on the complexity of computing exact problem solutions and conduct a detailed analysis identifying tractable special cases. To this end, we adopt a parameterized viewpoint in which we spot several parameters which describe properties of a specific problem instance that allow to solve the instance efficiently. We develop specialized algorithms whose running times are polynomial if the corresponding parameter value is constant. We also investigate in which cases the problems remain intractable even for small parameter values. We thereby chart the border between tractability and intractability for some practically motivated problems which yields a better understanding of their computational complexity. In particular, we consider the following problems. General Position Subset Selection is the problem to select a maximum number of points in general position from a given set of points in the plane. Point sets in general position are well-studied in geometry and play a role in data visualization. We prove several computational hardness results and show how polynomial-time data reduction can be applied to solve the problem if the sought number of points in general position is very small or very large. The Distinct Vectors problem asks to select a minimum number of columns in a given matrix such that all rows in the selected submatrix are pairwise distinct. This problem is motivated by combinatorial feature selection. We prove a complexity dichotomy with respect to combinations of the minimum and the maximum pairwise Hamming distance of the rows for binary input matrices, thus separating polynomial-time solvable from NP-hard cases. Co-Clustering is a well-known matrix clustering problem in data mining where the goal is to partition a matrix into homogenous submatrices. We conduct an extensive multivariate complexity analysis revealing several NP-hard and some polynomial-time solvable and fixed-parameter tractable cases. The generic F-free Editing problem is a graph modification problem in which a given graph has to be modified by a minimum number of edge modifications such that it does not contain any induced subgraph isomorphic to the graph F. We consider three special cases of this problem: The graph clustering problem Cluster Editing with applications in machine learning, the Triangle Deletion problem which is motivated by network cluster analysis, and Feedback Arc Set in Tournaments with applications in rank aggregation. We introduce a new parameterization by the number of edge modifications above a lower bound derived from a packing of induced forbidden subgraphs and show fixed-parameter tractability for all of the three above problems with respect to this parameter. Moreover, we prove several NP-hardness results for other variants of F-free Editing for a constant parameter value. The problem DTW-Mean is to compute a mean time series of a given sample of time series with respect to the dynamic time warping distance. This is a fundamental problem in time series analysis the complexity of which is unknown. We give an exact exponential-time algorithm for DTW-Mean and prove polynomial-time solvability for the special case of binary time series. Diese Dissertation befasst sich mit der Analyse der Berechnungskomplexität von NP-schweren Problemen aus dem Bereich Data Science. Für die meisten der hier betrachteten Probleme wurde die Berechnungskomplexität bisher nicht sehr detailliert untersucht. Wir führen daher eine genaue Komplexitätsanalyse dieser Probleme durch, mit dem Ziel, effizient lösbare Spezialfälle zu identifizieren. Zu diesem Zweck nehmen wir eine parametrisierte Perspektive ein, bei der wir bestimmte Parameter definieren, welche Eigenschaften einer konkreten Probleminstanz beschreiben, die es ermöglichen, diese Instanz effizient zu lösen. Wir entwickeln dabei spezielle Algorithmen, deren Laufzeit für konstante Parameterwerte polynomiell ist. Darüber hinaus untersuchen wir, in welchen Fällen die Probleme selbst bei kleinen Parameterwerten berechnungsschwer bleiben. Somit skizzieren wir die Grenze zwischen schweren und handhabbaren Probleminstanzen, um ein besseres Verständnis der Berechnungskomplexität für die folgenden praktisch motivierten Probleme zu erlangen. Beim General Position Subset Selection Problem ist eine Menge von Punkten in der Ebene gegeben und das Ziel ist es, möglichst viele Punkte in allgemeiner Lage davon auszuwählen. Punktmengen in allgemeiner Lage sind in der Geometrie gut untersucht und spielen unter anderem im Bereich der Datenvisualisierung eine Rolle. Wir beweisen etliche Härteergebnisse und zeigen, wie das Problem mittels Polynomzeitdatenreduktion gelöst werden kann, falls die Anzahl gesuchter Punkte in allgemeiner Lage sehr klein oder sehr groß ist. Distinct Vectors ist das Problem, möglichst wenige Spalten einer gegebenen Matrix so auszuwählen, dass in der verbleibenden Submatrix alle Zeilen paarweise verschieden sind. Dieses Problem hat Anwendungen im Bereich der kombinatorischen Merkmalsselektion. Wir betrachten Kombinationen aus maximalem und minimalem paarweisen Hamming-Abstand der Zeilenvektoren und beweisen eine Komplexitätsdichotomie für Binärmatrizen, welche die NP-schweren von den polynomzeitlösbaren Kombinationen unterscheidet. Co-Clustering ist ein bekanntes Matrix-Clustering-Problem aus dem Gebiet Data-Mining. Ziel ist es, eine Matrix in möglichst homogene Submatrizen zu partitionieren. Wir führen eine umfangreiche multivariate Komplexitätsanalyse durch, in der wir zahlreiche NP-schwere, sowie polynomzeitlösbare und festparameterhandhabbare Spezialfälle identifizieren. Bei F-free Editing handelt es sich um ein generisches Graphmodifikationsproblem, bei dem ein Graph durch möglichst wenige Kantenmodifikationen so abgeändert werden soll, dass er keinen induzierten Teilgraphen mehr enthält, der isomorph zum Graphen F ist. Wir betrachten die drei folgenden Spezialfälle dieses Problems: Das Graph-Clustering-Problem Cluster Editing aus dem Bereich des Maschinellen Lernens, das Triangle Deletion Problem aus der Netzwerk-Cluster-Analyse und das Problem Feedback Arc Set in Tournaments mit Anwendungen bei der Aggregation von Rankings. Wir betrachten eine neue Parametrisierung mittels der Differenz zwischen der maximalen Anzahl Kantenmodifikationen und einer unteren Schranke, welche durch eine Menge von induzierten Teilgraphen bestimmt ist. Wir zeigen Festparameterhandhabbarkeit der drei obigen Probleme bezüglich dieses Parameters. Darüber hinaus beweisen wir etliche NP-Schwereergebnisse für andere Problemvarianten von F-free Editing bei konstantem Parameterwert. DTW-Mean ist das Problem, eine Durchschnittszeitreihe bezüglich der Dynamic-Time-Warping-Distanz für eine Menge gegebener Zeitreihen zu berechnen. Hierbei handelt es sich um ein grundlegendes Problem der Zeitreihenanalyse, dessen Komplexität bisher unbekannt ist. Wir entwickeln einen exakten Exponentialzeitalgorithmus für DTW-Mean und zeigen, dass der Spezialfall binärer Zeitreihen in polynomieller Zeit lösbar ist.

Computer Science – Theory and Applications

Computer Science – Theory and Applications
Author: Fedor V. Fomin
Publisher: Springer
Total Pages: 364
Release: 2018-05-24
Genre: Computers
ISBN: 3319905309

This book constitutes the proceedings of the 13th International Computer Science Symposium in Russia, CSR 2018, held in Moscow, Russia, in May 2018. The 24 full papers presented together with 7 invited lectures were carefully reviewed and selected from 42 submissions. The papers cover a wide range of topics such as algorithms and data structures; combinatorial optimization; constraint solving; computational complexity; cryptography; combinatorics in computer science; formal languages and automata; algorithms for concurrent and distributed systems; networks; and proof theory and applications of logic to computer science.

Computer Science – Theory and Applications

Computer Science – Theory and Applications
Author: Henning Fernau
Publisher: Springer Nature
Total Pages: 444
Release: 2020-06-22
Genre: Computers
ISBN: 3030500268

This book constitutes the proceedings of the 15th International Computer Science Symposium in Russia, CSR 2020, held in Yekaterinburg, Russia, in June 2020. The 25 full papers and 6 invited papers were carefully reviewed and selected from 49 submissions. The papers cover a broad range of topics, such as: algorithms and data structures; computational complexity, including hardness of approximation and parameterized complexity; randomness in computing, approximation algorithms, fixed-parameter algorithms; combinatorial optimization, constraint satisfaction, operations research; computational geometry; string algorithms; formal languages and automata, including applications to computational linguistics; codes and cryptography; combinatorics in computer science; computational biology; applications of logic to computer science, proof complexity; database theory; distributed computing; fundamentals of machine learning, including learning theory, grammatical inference and neural computing; computational social choice; quantum computing and quantum cryptography; theoretical aspects of big data. The conference was cancelled as a live conference due to the corona pandemic.

Perception-based Data Mining and Decision Making in Economics and Finance

Perception-based Data Mining and Decision Making in Economics and Finance
Author: Ildar Batyrshin
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2007-03-15
Genre: Computers
ISBN: 3540362444

The primary goal of this book is to present to the scientific and management communities a selection of applications using recent Soft Computing (SC) and Computing with Words and Perceptions (CWP) models and techniques meant to solve some economics and financial problems that are of utmost importance. The book starts with a coverage of data mining tools and techniques that may be of use and significance for economic and financial analyses and applications. Notably, fuzzy and natural language based approaches and solutions for a more human consistent dealing with decision support, time series analysis, forecasting, clustering, etc. are discussed. The second part deals with various decision making models, particularly under probabilistic and fuzzy uncertainty, and their applications in solving a wide array of problems including portfolio optimization, option pricing, financial engineering, risk analysis etc. The selected examples could also serve as a starting point or as an opening out, in the SC and CWP techniques application to a wider range of problems in economics and finance.

Logic from Computer Science

Logic from Computer Science
Author: Yiannis N. Moschovakis
Publisher: Springer Science & Business Media
Total Pages: 607
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461228220

The volume is the outgrowth of a workshop with the same title held at MSRI in the week of November 13-17, 1989, and for those who did not get it, Logic from Computer Science is the converse of Logic in Computer Science, the full name of the highly successful annual LICS conferences. We meant to have a conference which would bring together the LICS commu nity with some of the more traditional "mathematical logicians" and where the emphasis would be on the flow of ideas from computer science to logic rather than the other way around. In a LICS talk, sometimes, the speaker presents a perfectly good theorem about (say) the A-calculus or finite model theory in terms of its potential applications rather than its (often more ob vious) intrinsic, foundational interest and intricate proof. This is not meant to be a criticism; the LICS meetings are, after all, organized by the IEEE Computer Society. We thought, for once, it would be fun to see what we would get if we asked the speakers to emphasize the relevance of their work for logic rather than computer science and to point out what is involved in the proofs. I think, mostly, it worked. In any case, the group of people represented as broad a selection of logicians as I have seen in recent years, and the quality of the talks was (in my view) exceptionally, unusually high. I learned a lot and (I think) others did too.