Some Tapas of Computer Algebra

Some Tapas of Computer Algebra
Author: Arjeh M. Cohen
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2013-03-09
Genre: Computers
ISBN: 3662038919

This book presents the basic concepts and algorithms of computer algebra using practical examples that illustrate their actual use in symbolic computation. A wide range of topics are presented, including: Groebner bases, real algebraic geometry, lie algebras, factorization of polynomials, integer programming, permutation groups, differential equations, coding theory, automatic theorem proving, and polyhedral geometry. This book is a must read for anyone working in the area of computer algebra, symbolic computation, and computer science.

Computer Algebra Handbook

Computer Algebra Handbook
Author: Johannes Grabmeier
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 2012-12-06
Genre: Computers
ISBN: 3642558267

This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.

Computer Mathematics

Computer Mathematics
Author: Kiyoshi Shirayanagi
Publisher: World Scientific
Total Pages: 241
Release: 2001
Genre: Computers
ISBN: 981024763X

This volume covers some of the most recent and significant advances in computer mathematics, including algebraic, symbolic, numeric and geometric computation, automated mathematical reasoning, mathematical software and computer-aided geometric design. Researchers, engineers, academics and graduate students interested in doing mathematics using computers will find this volume good reading and a valuable reference.

Codes, Cryptology and Curves with Computer Algebra

Codes, Cryptology and Curves with Computer Algebra
Author: Ruud Pellikaan
Publisher: Cambridge University Press
Total Pages: 612
Release: 2017-11-02
Genre: Mathematics
ISBN: 1108547826

This well-balanced text touches on theoretical and applied aspects of protecting digital data. The reader is provided with the basic theory and is then shown deeper fascinating detail, including the current state of the art. Readers will soon become familiar with methods of protecting digital data while it is transmitted, as well as while the data is being stored. Both basic and advanced error-correcting codes are introduced together with numerous results on their parameters and properties. The authors explain how to apply these codes to symmetric and public key cryptosystems and secret sharing. Interesting approaches based on polynomial systems solving are applied to cryptography and decoding codes. Computer algebra systems are also used to provide an understanding of how objects introduced in the book are constructed, and how their properties can be examined. This book is designed for Masters-level students studying mathematics, computer science, electrical engineering or physics.

Algorithms in Real Algebraic Geometry

Algorithms in Real Algebraic Geometry
Author: Saugata Basu
Publisher: Springer Science & Business Media
Total Pages: 602
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662053551

In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.

Discrete and Computational Geometry

Discrete and Computational Geometry
Author: Boris Aronov
Publisher: Springer Science & Business Media
Total Pages: 847
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642555667

An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.

Commutative Algebra Methods for Coding Theory

Commutative Algebra Methods for Coding Theory
Author: Ştefan Ovidiu I. Tohăneanu
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 276
Release: 2024-07-01
Genre: Mathematics
ISBN: 3111214796

This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.

Algebra, Geometry and Software Systems

Algebra, Geometry and Software Systems
Author: Michael Joswig
Publisher: Springer Science & Business Media
Total Pages: 332
Release: 2013-03-14
Genre: Mathematics
ISBN: 3662051486

A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.

Fourteenth International Conference Zaragoza–Pau on Mathematics and its Applications

Fourteenth International Conference Zaragoza–Pau on Mathematics and its Applications
Author: López de Silanes, M. C.
Publisher: Prensas de la Universidad de Zaragoza
Total Pages: 242
Release: 2018-02-20
Genre: Mathematics
ISBN: 8417358005

The International Conference Zaragoza-Pau on Mathematics and its Applications was organized by the Departamento de Matemática Aplicada, the Departamento de Métodos Estadísticos and the Departamento de Matemáticas, all of them from the Universidad de Zaragoza (Spain), and the Laboratoire de Mathématiques et de leurs Applications, from the Université de Pau et des Pays de l’Adour (France). This conference has been held every two years since 1989. The aim of this conference is to present recent advances in Applied Mathematics, Statistics and Pure Mathematics, putting special emphasis on subjects linked to petroleum engineering and environmental problems. The Fourteenth Conference took place in Jaca (Spain) from 12nd to 15th September 2016. During those four days, 99 mathematicians, coming from di erent universities, research institutes or the industrial sector, attended 14 plenary lectures, 62 contributed talks and a poster session with 4 posters. We note that in this edition there were 11 mini-symposia, two of them co-organized by colleagues from the Universidad de Zaragoza and the Université de Pau et des Pays de l’Adour.

Topics in Algebraic Graph Theory

Topics in Algebraic Graph Theory
Author: Lowell W. Beineke
Publisher: Cambridge University Press
Total Pages: 302
Release: 2004-10-04
Genre: Mathematics
ISBN: 9780521801973

There is no other book with such a wide scope of both areas of algebraic graph theory.