Topology of Metric Spaces

Topology of Metric Spaces
Author: S. Kumaresan
Publisher: Alpha Science Int'l Ltd.
Total Pages: 172
Release: 2005
Genre: Computers
ISBN: 9781842652503

"Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.

Descriptive Topology and Functional Analysis II

Descriptive Topology and Functional Analysis II
Author: Juan Carlos Ferrando
Publisher: Springer
Total Pages: 302
Release: 2019-06-02
Genre: Mathematics
ISBN: 3030173763

This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel López-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.

Fundamentals of Convex Analysis and Optimization

Fundamentals of Convex Analysis and Optimization
Author: Rafael Correa
Publisher: Springer Nature
Total Pages: 451
Release: 2023-07-11
Genre: Business & Economics
ISBN: 303129551X

This book aims at an innovative approach within the framework of convex analysis and optimization, based on an in-depth study of the behavior and properties of the supremum of families of convex functions. It presents an original and systematic treatment of convex analysis, covering standard results and improved calculus rules in subdifferential analysis. The tools supplied in the text allow a direct approach to the mathematical foundations of convex optimization, in particular to optimality and duality theory. Other applications in the book concern convexification processes in optimization, non-convex integration of the Fenchel subdifferential, variational characterizations of convexity, and the study of Chebychev sets. At the same time, the underlying geometrical meaning of all the involved concepts and operations is highlighted and duly emphasized. A notable feature of the book is its unifying methodology, as well as the novelty of providing an alternative or complementary view to the traditional one in which the discipline is presented to students and researchers. This textbook can be used for courses on optimization, convex and variational analysis, addressed to graduate and post-graduate students of mathematics, and also students of economics and engineering. It is also oriented to provide specific background for courses on optimal control, data science, operations research, economics (game theory), etc. The book represents a challenging and motivating development for those experts in functional analysis, convex geometry, and any kind of researchers who may be interested in applications of their work.

Applied Discrete Structures

Applied Discrete Structures
Author: K. D. Joshi
Publisher: New Age International
Total Pages: 966
Release: 1997
Genre: Computer science
ISBN: 9788122408263

Although This Book Is Intended As A Sequel To Foundations Of Discrete Mathematics By The Same Author, It Can Be Read Independently Of The Latter, As The Relevant Background Needed Has Been Reviewed In Chapter 1. The Subsequent Chapters Deal With Graph Theory (With Applications), Analysis Of Algorithms (With A Detailed Study Of A Few Sorting Algorithms And A Discussion Of Tractability), Linear Programming (With Applications, Variations, Karmarkars Polynomial Time Algorithm, Integer And Quadratic Programming), Applications Of Algebra (To Polyas Theory Of Counting, Galois Theory, Coding Theory Of Designs). A Chapter On Matroids Familiarises The Reader With This Relatively New Branch Of Discrete Mathematics.Even Though Some Of The Topics Are Relatively Advanced, An Attempt Has Been Made To Keep The Style Elementary, So That A Sincere Student Can Read The Book On His Own. A Large Number Of Comments, Exercises, And References Is Included To Broaden The Readers Scope Of Vision. A Detailed Index Is Provided For Easy Reference.

Encyclopedia of General Topology

Encyclopedia of General Topology
Author: K.P. Hart
Publisher: Elsevier
Total Pages: 537
Release: 2003-11-18
Genre: Mathematics
ISBN: 0080530869

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms

Algebraic Topology

Algebraic Topology
Author: Rafael Ayala
Publisher: ALPHA SCIENCE INTERNATIONAL LIMITED
Total Pages: 386
Release: 2012-01-24
Genre: Mathematics
ISBN: 1783322446

ALGEBRAIC TOPOLOGY: An Introduction starts with the combinatorial definition of simplicial (co) homology and its main properties (including duality for homology manifolds). Then the geometrical facet of (co) homology via bordism theory is sketched and it is shown that the corresponding theory for pseudomanifolds coincides with the homology obtained from the singular chain complex. The classical applications of (co) homology theory are included. Degree and fixed-point theory are presented with their extensions to infinite dimensional spaces. The book also contains a geometric approach to the Hurewicz theorem relating homology and homotopy. The last chapter exploits the algebraic invariants introduced in the book to give in detail the homotopical classification of the three-dimensional lens spaces. Each chapter concludes with a generous list of exercises and problems; many of them contain hints for their solution. Some groups of problems introduce a topic not included in the basic core of the book.

Prospects in Topology (AM-138), Volume 138

Prospects in Topology (AM-138), Volume 138
Author: Frank Quinn
Publisher: Princeton University Press
Total Pages: 340
Release: 2016-03-02
Genre: Mathematics
ISBN: 1400882583

This collection brings together influential papers by mathematicians exploring the research frontiers of topology, one of the most important developments of modern mathematics. The papers cover a wide range of topological specialties, including tools for the analysis of group actions on manifolds, calculations of algebraic K-theory, a result on analytic structures on Lie group actions, a presentation of the significance of Dirac operators in smoothing theory, a discussion of the stable topology of 4-manifolds, an answer to the famous question about symmetries of simply connected manifolds, and a fresh perspective on the topological classification of linear transformations. The contributors include A. Adem, A. H. Assadi, M. Bökstedt, S. E. Cappell, R. Charney, M. W. Davis, P. J. Eccles, M. H. Freedman, I. Hambleton, J. C. Hausmann, S. Illman, G. Katz, M. Kreck, W. Lück, I. Madsen, R. J. Milgram, J. Morava, E. K. Pedersen, V. Puppe, F. Quinn, A. Ranicki, J. L. Shaneson, D. Sullivan, P. Teichner, Z. Wang, and S. Weinberger.

Basic Topology

Basic Topology
Author: Dan Edwin Christie
Publisher:
Total Pages: 276
Release: 1976
Genre: Mathematics
ISBN:

Non-Homogeneous Markov Chains and Systems

Non-Homogeneous Markov Chains and Systems
Author: P.-C.G. Vassiliou
Publisher: CRC Press
Total Pages: 607
Release: 2022-12-21
Genre: Mathematics
ISBN: 135198070X

Non-Homogeneous Markov Chains and Systems: Theory and Applications fulfills two principal goals. It is devoted to the study of non-homogeneous Markov chains in the first part, and to the evolution of the theory and applications of non-homogeneous Markov systems (populations) in the second. The book is self-contained, requiring a moderate background in basic probability theory and linear algebra, common to most undergraduate programs in mathematics, statistics, and applied probability. There are some advanced parts, which need measure theory and other advanced mathematics, but the readers are alerted to these so they may focus on the basic results. Features A broad and accessible overview of non-homogeneous Markov chains and systems Fills a significant gap in the current literature A good balance of theory and applications, with advanced mathematical details separated from the main results Many illustrative examples of potential applications from a variety of fields Suitable for use as a course text for postgraduate students of applied probability, or for self-study Potential applications included could lead to other quantitative areas The book is primarily aimed at postgraduate students, researchers, and practitioners in applied probability and statistics, and the presentation has been planned and structured in a way to provide flexibility in topic selection so that the text can be adapted to meet the demands of different course outlines. The text could be used to teach a course to students studying applied probability at a postgraduate level or for self-study. It includes many illustrative examples of potential applications, in order to be useful to researchers from a variety of fields.