Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations
Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 2002
Genre: Mathematics
ISBN: 0821832514

Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.

Solving Polynomial Equations

Solving Polynomial Equations
Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2005-04-27
Genre: Computers
ISBN: 3540243267

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.

Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini
Author: Daniel J. Bates
Publisher: SIAM
Total Pages: 372
Release: 2013-11-08
Genre: Science
ISBN: 1611972698

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science
Author: Andrew J Sommese
Publisher: World Scientific
Total Pages: 425
Release: 2005-03-21
Genre: Mathematics
ISBN: 9814480886

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.

Solving Polynomial Equation Systems I

Solving Polynomial Equation Systems I
Author: Teo Mora
Publisher: Cambridge University Press
Total Pages: 452
Release: 2003-03-27
Genre: Mathematics
ISBN: 9780521811545

Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.

Applications of Computational Algebraic Geometry

Applications of Computational Algebraic Geometry
Author: David A. Cox
Publisher: American Mathematical Soc.
Total Pages: 188
Release: 1998
Genre: Mathematics
ISBN: 0821807501

This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that "crunching equations" is now as easy as "crunching numbers" has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in this book assume no previous acquaintance with the material.

Undergraduate Algebraic Geometry

Undergraduate Algebraic Geometry
Author: Miles Reid
Publisher: Cambridge University Press
Total Pages: 144
Release: 1988-12-15
Genre: Mathematics
ISBN: 9780521356626

Algebraic geometry is, essentially, the study of the solution of equations and occupies a central position in pure mathematics. This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time. With the minimum of prerequisites, Dr Reid introduces the reader to the basic concepts of algebraic geometry including: plane conics, cubics and the group law, affine and projective varieties, and non-singularity and dimension. He is at pains to stress the connections the subject has with commutative algebra as well as its relation to topology, differential geometry, and number theory. The book arises from an undergraduate course given at the University of Warwick and contains numerous examples and exercises illustrating the theory.

Algorithms in Real Algebraic Geometry

Algorithms in Real Algebraic Geometry
Author: Saugata Basu
Publisher: Springer Science & Business Media
Total Pages: 602
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662053551

In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.