Soliton Theory and Its Applications

Soliton Theory and Its Applications
Author: Chaohao Gu
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 2013-03-14
Genre: Mathematics
ISBN: 3662031027

Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.

Glimpses of Soliton Theory

Glimpses of Soliton Theory
Author: Alex Kasman
Publisher: American Mathematical Soc.
Total Pages: 322
Release: 2010
Genre: Mathematics
ISBN: 0821852450

Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --

The Direct Method in Soliton Theory

The Direct Method in Soliton Theory
Author: Ryogo Hirota
Publisher: Cambridge University Press
Total Pages: 220
Release: 2004-07-22
Genre: Mathematics
ISBN: 9780521836609

Account of method of solving soliton equations by the inventor of the method.

Introduction to Soliton Theory: Applications to Mechanics

Introduction to Soliton Theory: Applications to Mechanics
Author: Ligia Munteanu
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2006-07-06
Genre: Mathematics
ISBN: 1402025777

This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.

Introduction to Soliton Theory: Applications to Mechanics

Introduction to Soliton Theory: Applications to Mechanics
Author: Ligia Munteanu
Publisher: Springer Science & Business Media
Total Pages: 338
Release: 2004-08-11
Genre: Mathematics
ISBN: 9781402025761

This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.

Theory of Solitons

Theory of Solitons
Author: S. Novikov
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 1984-05-31
Genre: Mathematics
ISBN: 9780306109775

Hamiltonian Methods in the Theory of Solitons

Hamiltonian Methods in the Theory of Solitons
Author: Ludwig Faddeev
Publisher: Springer Science & Business Media
Total Pages: 602
Release: 2007-08-10
Genre: Science
ISBN: 3540699694

The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.

Important Developments in Soliton Theory

Important Developments in Soliton Theory
Author: A.S. Fokas
Publisher: Springer Science & Business Media
Total Pages: 563
Release: 2012-12-06
Genre: Science
ISBN: 3642580459

In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.

Solitons in Field Theory and Nonlinear Analysis

Solitons in Field Theory and Nonlinear Analysis
Author: Yisong Yang
Publisher: Springer Science & Business Media
Total Pages: 571
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475765487

There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.

Basic Methods Of Soliton Theory

Basic Methods Of Soliton Theory
Author: Ivan V Cherednik
Publisher: World Scientific
Total Pages: 264
Release: 1996-08-22
Genre: Science
ISBN: 9814499005

In the 25 years of its existence Soliton Theory has drastically expanded our understanding of “integrability” and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local conservation laws, Bäcklund-Darboux transforms), algebraic geometry (theta and Baker functions), and the inverse scattering method (Riemann-Hilbert problem) with well-grounded preliminaries are applied to various equations including principal chiral fields, Heisenberg magnets, Sin-Gordon, and Nonlinear Schrödinger equation.