Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
Total Pages: 0
Release: 2008-09-04
Genre: Mathematics
ISBN: 9780521753081

As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices.

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
Total Pages: 438
Release: 2008-09-04
Genre: Mathematics
ISBN: 1139473778

As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
Total Pages: 522
Release: 2003-06-05
Genre: Mathematics
ISBN: 9781139439411

The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.

Nonlinear Systems and Their Remarkable Mathematical Structures

Nonlinear Systems and Their Remarkable Mathematical Structures
Author: Norbert Euler
Publisher: CRC Press
Total Pages: 367
Release: 2021-09-07
Genre: Mathematics
ISBN: 1000423301

The third volume in this sequence of books consists of a collection of contributions that aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China just like the first two volumes, consists of contributions by world-leading experts in the subject of nonlinear systems, but in this instance only featuring contributions by leading Chinese scientists who also work in China (in some cases in collaboration with western scientists). Features Clearly illustrate the mathematical theories of nonlinear systems and its progress to both the non-expert and active researchers in this area Suitable for graduate students in Mathematics, Applied Mathematics and some of the Engineering sciences Written in a careful pedagogical manner by those experts who have been involved in the research themselves, and each contribution is reasonably self-contained

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
Total Pages: 518
Release: 2003-06-05
Genre: Mathematics
ISBN: 9780521753074

This book is about algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions; also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary and time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces).

Continuous Symmetries and Integrability of Discrete Equations

Continuous Symmetries and Integrability of Discrete Equations
Author: Decio Levi
Publisher: American Mathematical Society, Centre de Recherches Mathématiques
Total Pages: 520
Release: 2023-01-23
Genre: Mathematics
ISBN: 0821843540

This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.

Modern Analysis and Applications

Modern Analysis and Applications
Author: Vadim Adamyan
Publisher: Springer Science & Business Media
Total Pages: 518
Release: 2009-08-29
Genre: Mathematics
ISBN: 376439921X

This is the second of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.

Jacobi Matrices and the Moment Problem

Jacobi Matrices and the Moment Problem
Author: Yurij M. Berezansky
Publisher: Springer Nature
Total Pages: 489
Release: 2024-01-06
Genre: Mathematics
ISBN: 3031463870

This monograph presents the solution of the classical moment problem, the construction of Jacobi matrices and corresponding polynomials. The cases of strongly,trigonometric, complex and real two-dimensional moment problems are discussed, and the Jacobi-type matrices corresponding to the trigonometric moment problem are shown. The Berezansky theory of the expansion in generalized eigenvectors for corresponding set of commuting operators plays the key role in the proof of results. The book is recommended for researchers in fields of functional analysis, operator theory, mathematical physics, and engineers who deal with problems of coupled pendulums.