Software Error Detection through Testing and Analysis

Software Error Detection through Testing and Analysis
Author: J. C. Huang
Publisher: John Wiley & Sons
Total Pages: 350
Release: 2009-08-06
Genre: Computers
ISBN: 0470464054

An in-depth review of key techniques in software error detection Software error detection is one of the most challenging problems in software engineering. Now, you can learn how to make the most of software testing by selecting test cases to maximize the probability of revealing latent errors. Software Error Detection through Testing and Analysis begins with a thorough discussion of test-case selection and a review of the concepts, notations, and principles used in the book. Next, it covers: Code-based test-case selection methods Specification-based test-case selection methods Additional advanced topics in testing Analysis of symbolic trace Static analysis Program instrumentation Each chapter begins with a clear introduction and ends with exercises for readers to test their understanding of the material. Plus, appendices provide a logico-mathematical background, glossary, and questions for self-assessment. Assuming a basic background in software quality assurance and an ability to write nontrivial programs, the book is free of programming languages and paradigms used to construct the program under test. Software Error Detection through Testing and Analysis is suitable as a professional reference for software testing specialists, software engineers, software developers, and software programmers. It is also appropriate as a textbook for software engineering, software testing, and software quality assurance courses at the advanced undergraduate and graduate levels.

A Student's Guide to Data and Error Analysis

A Student's Guide to Data and Error Analysis
Author: Herman J. C. Berendsen
Publisher: Cambridge University Press
Total Pages: 239
Release: 2011-04-07
Genre: Technology & Engineering
ISBN: 1139497855

All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.

Medical Device Use Error

Medical Device Use Error
Author: Michael Wiklund
Publisher: CRC Press
Total Pages: 262
Release: 2016-01-06
Genre: Medical
ISBN: 1498705804

Medical Device Use Error: Root Cause Analysis offers practical guidance on how to methodically discover and explain the root cause of a use error-a mistake-that occurs when someone uses a medical device. Covering medical devices used in the home and those used in clinical environments, the book presents informative case studies about the use errors

Software Design X-Rays

Software Design X-Rays
Author: Adam Tornhill
Publisher: Pragmatic Bookshelf
Total Pages: 356
Release: 2018-03-08
Genre: Computers
ISBN: 1680505807

Are you working on a codebase where cost overruns, death marches, and heroic fights with legacy code monsters are the norm? Battle these adversaries with novel ways to identify and prioritize technical debt, based on behavioral data from how developers work with code. And that's just for starters. Because good code involves social design, as well as technical design, you can find surprising dependencies between people and code to resolve coordination bottlenecks among teams. Best of all, the techniques build on behavioral data that you already have: your version-control system. Join the fight for better code! Use statistics and data science to uncover both problematic code and the behavioral patterns of the developers who build your software. This combination gives you insights you can't get from the code alone. Use these insights to prioritize refactoring needs, measure their effect, find implicit dependencies between different modules, and automatically create knowledge maps of your system based on actual code contributions. In a radical, much-needed change from common practice, guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Discover a comprehensive set of practical analysis techniques based on version-control data, where each point is illustrated with a case study from a real-world codebase. Because the techniques are language neutral, you can apply them to your own code no matter what programming language you use. Guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Apply research findings from social psychology to software development, ensuring you get the tools you need to coach your organization towards better code. If you're an experienced programmer, software architect, or technical manager, you'll get a new perspective that will change how you work with code. What You Need: You don't have to install anything to follow along in the book. TThe case studies in the book use well-known open source projects hosted on GitHub. You'll use CodeScene, a free software analysis tool for open source projects, for the case studies. We also discuss alternative tooling options where they exist.

Data Reduction and Error Analysis for the Physical Sciences

Data Reduction and Error Analysis for the Physical Sciences
Author: Philip R. Bevington
Publisher: McGraw-Hill Science, Engineering & Mathematics
Total Pages: 362
Release: 1992
Genre: Mathematics
ISBN:

This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.