Sobolev Spaces Their Generalizations And Elliptic Problems In Smooth And Lipschitz Domains
Download Sobolev Spaces Their Generalizations And Elliptic Problems In Smooth And Lipschitz Domains full books in PDF, epub, and Kindle. Read online free Sobolev Spaces Their Generalizations And Elliptic Problems In Smooth And Lipschitz Domains ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mikhail S. Agranovich |
Publisher | : Springer |
Total Pages | : 343 |
Release | : 2015-05-06 |
Genre | : Mathematics |
ISBN | : 3319146483 |
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
Author | : Sergei Rogosin |
Publisher | : Springer |
Total Pages | : 329 |
Release | : 2019-01-30 |
Genre | : Mathematics |
ISBN | : 3030026507 |
This is a book comprising selected papers of colleagues and friends of Heinrich Begehr on the occasion of his 80th birthday. It aims at being a tribute to the excellent achievements of Heinrich Begehr in complex analysis and complex differential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC).
Author | : Francisco J. Sayas |
Publisher | : CRC Press |
Total Pages | : 492 |
Release | : 2019-01-16 |
Genre | : Mathematics |
ISBN | : 0429016204 |
Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics
Author | : Malcolm Brown |
Publisher | : Springer Nature |
Total Pages | : 731 |
Release | : 2023-09-21 |
Genre | : Mathematics |
ISBN | : 3031311396 |
This volume is dedicated to the memory of Sergey Naboko (1950-2020). In addition to original research contributions covering the vast areas of interest of Sergey Naboko, it includes personal reminiscences and comments on the works and legacy of Sergey Naboko’s scientific achievements. Areas from complex analysis to operator theory, especially, spectral theory, are covered, and the papers will inspire current and future researchers in these areas.
Author | : Christian Constanda |
Publisher | : Springer Nature |
Total Pages | : 407 |
Release | : 2023-10-31 |
Genre | : Mathematics |
ISBN | : 303134099X |
This volume contains a collection of articles on state-of-the-art developments in the construction of theoretical integral techniques and their application to specific problems in science and engineering. Chapters in this book are based on talks given at the Seventeenth International Conference on Integral Methods in Science and Engineering, held virtually in July 2022, and are written by internationally recognized researchers. This collection will be of interest to researchers in applied mathematics, physics, and mechanical, electrical, and petroleum engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential working tool.
Author | : |
Publisher | : Springer Nature |
Total Pages | : 444 |
Release | : |
Genre | : |
ISBN | : 3031743709 |
Author | : Jussi Behrndt |
Publisher | : Springer Nature |
Total Pages | : 775 |
Release | : 2020-01-03 |
Genre | : Mathematics |
ISBN | : 3030367142 |
This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.
Author | : Konrad Schmüdgen |
Publisher | : Springer Nature |
Total Pages | : 388 |
Release | : 2020-07-28 |
Genre | : Mathematics |
ISBN | : 3030463664 |
This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.
Author | : Dmitry Balandin |
Publisher | : Springer Nature |
Total Pages | : 418 |
Release | : 2021-06-23 |
Genre | : Computers |
ISBN | : 3030787591 |
This book constitutes selected and revised papers from the 20th International Conference on Mathematical Modeling and Supercomputer Technologies, MMST 2020, held in Nizhny Novgorod, Russia, in November 2020. Due to the COVID-19 pandemic the conference was held online. The 25 full papers and 8 short papers presented in the volume were thoroughly reviewed and selected from the 106 submissions. They are organized in topical secions on computational methods for mathematical models analysis; computation in optimization and optimal control; supercomputer simulation.
Author | : Ionuţ Munteanu |
Publisher | : Springer |
Total Pages | : 222 |
Release | : 2019-02-15 |
Genre | : Science |
ISBN | : 3030110990 |
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.