Sobolev Met Poincare
Download Sobolev Met Poincare full books in PDF, epub, and Kindle. Read online free Sobolev Met Poincare ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Piotr Hajłasz |
Publisher | : American Mathematical Soc. |
Total Pages | : 119 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821820478 |
There are several generalizations of the classical theory of Sobolev spaces as they are necessary for the applications to Carnot-Caratheodory spaces, subelliptic equations, quasiconformal mappings on Carnot groups and more general Loewner spaces, analysis on topological manifolds, potential theory on infinite graphs, analysis on fractals and the theory of Dirichlet forms. The aim of this paper is to present a unified approach to the theory of Sobolev spaces that covers applications to many of those areas. The variety of different areas of applications forces a very general setting. We are given a metric space $X$ equipped with a doubling measure $\mu$. A generalization of a Sobolev function and its gradient is a pair $u\in L^{1}_{\rm loc}(X)$, $0\leq g\in L^{p}(X)$ such that for every ball $B\subset X$ the Poincare-type inequality $ \intbar_{B} u-u_{B} \, d\mu \leq C r ( \intbar_{\sigma B} g^{p}\, d\mu)^{1/p}\,$ holds, where $r$ is the radius of $B$ and $\sigma\geq 1$, $C>0$ are fixed constants. Working in the above setting we show that basically all relevant results from the classical theory have their counterparts in our general setting. These include Sobolev-Poincare type embeddings, Rellich-Kondrachov compact embedding theorem, and even a version of the Sobolev embedding theorem on spheres. The second part of the paper is devoted to examples and applications in the above mentioned areas.
Author | : Juha Heinonen |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2015-02-05 |
Genre | : Mathematics |
ISBN | : 1107092345 |
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Author | : Victor I. Burenkov |
Publisher | : American Mathematical Soc. |
Total Pages | : 354 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 0821840606 |
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."
Author | : Constantine Georgakis |
Publisher | : Springer |
Total Pages | : 248 |
Release | : 2014-11-07 |
Genre | : Mathematics |
ISBN | : 3319105450 |
This volume of papers presented at the conference in honor of Calixto P. Calderón by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.
Author | : Dominique Bakry |
Publisher | : Springer Science & Business Media |
Total Pages | : 555 |
Release | : 2013-11-18 |
Genre | : Mathematics |
ISBN | : 3319002279 |
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
Author | : Guy David |
Publisher | : American Mathematical Society |
Total Pages | : 123 |
Release | : 2021-12-30 |
Genre | : Mathematics |
ISBN | : 1470450437 |
Author | : Suzanne Lenhart |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 365 |
Release | : 2023-05-22 |
Genre | : Mathematics |
ISBN | : 3110792788 |
This volume is dedicated to the legacy of David R. Adams (1941-2021) and discusses calculus of variations, functional - harmonic - potential analysis, partial differential equations, and their applications in modeling, mathematical physics, and differential - integral geometry.
Author | : Giovanna Citti |
Publisher | : Springer |
Total Pages | : 381 |
Release | : 2015-10-31 |
Genre | : Mathematics |
ISBN | : 3319026666 |
The analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.
Author | : Shin-ichi Ohta |
Publisher | : Springer Nature |
Total Pages | : 324 |
Release | : 2021-10-09 |
Genre | : Mathematics |
ISBN | : 3030806502 |
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.
Author | : Paolo Ciatti |
Publisher | : World Scientific |
Total Pages | : 460 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 9812811060 |
This volume consists of a series of lecture notes on mathematical analysis. The contributors have been selected on the basis of both their outstanding scientific level and their clarity of exposition. Thus, the present collection is particularly suited to young researchers and graduate students. Through this volume, the editors intend to provide the reader with material otherwise difficult to find and written in a manner which is also accessible to nonexperts.